Interval Management (IM) is a concept designed to be used by air traffic controllers and flight crews to more efficiently and precisely manage inter-aircraft spacing. Both government and industry have been working together to develop the IM concept and standards for both ground automation and supporting avionics. NASA contracted with Boeing, Honeywell, and United Airlines to build and flight test an avionics prototype based on NASA's spacing algorithm and conduct a flight test. The flight test investigated four different types of IM operations over the course of nineteen days, and included en route, arrival, and final approach phases of flight. This paper examines the spacing accuracy achieved during the flight test and the rate of speed commands provided to the flight crew. Many of the time-based IM operations met or exceeded the operational design goals set out in the standards for the maintain operations and a subset of the achieve operations. Those operations which did not meet the goals were due to issues that are identified and will be further analyzed.
A 19-day flight test of an Interval Management (IM) avionics prototype was conducted in Washington State using three aircraft to precisely achieve and maintain a spacing interval behind the preceding aircraft. NASA contracted with Boeing, Honeywell, and United Airlines to build this prototype, and then worked closely with them, the FAA, and other industry partners to test this prototype in flight. Four different IM operation types were investigated during this test in the en route, arrival, and final approach phases of flight. Many of the IM operations met or exceeded the design goals established prior to the test. However, there were issues discovered throughout the flight test, including the rate and magnitude of IM commanded speed changes and the difference between expected and actual aircraft deceleration rates.
The purpose of the NASA Langley Airborne Spacing for Terminal Arrival Routes (ASTAR) research aboard the Boeing ecoDemonstrator aircraft was to demonstrate the use of NASA's ASTAR algorithm using contemporary tools of the Federal Aviation Administration's Next Generation Air Transportation System (NEXTGEN). EcoDemonstrator is a Boeing test program which utilizes advanced experimental equipment to accelerate the science of aerospace and environmentally friendly technologies. The ASTAR Flight Test provided a proof-of-concept flight demonstration that exercised an algorithmic-based application in an actual aircraft. The test aircraft conducted Interval Management operations to provide time-based spacing off a target aircraft in non-simulator wind conditions. Work was conducted as a joint effort between NASA and Boeing to integrate ASTAR in a Boeing supplied B787 test aircraft while using a T-38 aircraft as the target. This demonstration was also used to identify operational risks to future flight trials for the NASA Air Traffic Management Technology Demonstration expected in 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.