The stress-inducible gene heme oxygenase (HO-1) has previously been shown to provide cytoprotection against oxidative stress. The mechanism(s) by which HO-1 provides this cytoprotection is poorly understood. We demonstrate here that carbon monoxide (CO), a byproduct released during the degradation of heme by HO, plays a major role in mediating the cytoprotection against oxidant-induced lung injury. We show in vitro that CO protects cultured epithelial cells from hyperoxic damage. By using dominant negative mutants and mice deficient in the genes for the various MAP kinases, we demonstrate that the cytoprotective effects of CO are mediated by selective activation of the MKK3/p38 beta protein MAP kinase pathway. In vivo, our experiments demonstrate that CO at a low concentration protects the lungs, extends the survival of the animals, and exerts potent anti-inflammatory effects with reduced inflammatory cell influx into the lungs and marked attenuation in the expression of pro-inflammatory cytokines.
Cytosolic Ca 2؉ (Ca i 2؉ ) regulates secretion of bicarbonate and other ions in the cholangiocyte. In other cell types, this second messenger acts through Ca 2؉ waves, Ca 2؉ oscillations, and other subcellular Ca 2؉ signaling patterns, but little is known about the subcellular organization of Ca 2؉ signaling in cholangiocytes. Therefore, we examined Ca 2؉ signaling and the subcellular distribution of Ca 2؉ release channels in cholangiocytes and in a model cholangiocyte cell line. The expression and subcellular distribution of inositol 1,4,5-trisphosphate (InsP 3 ) receptor (InsP 3 R) isoforms and the ryanodine receptor (RyR) were determined in cholangiocytes from normal rat liver and in the normal rat cholangiocyte (NRC) polarized bile duct cell line. Subcellular Ca 2؉ signaling in cholangiocytes was examined by confocal microscopy. All 3 InsP 3 R isoforms were expressed in cholangiocytes, whereas RyR was not expressed. The type III InsP 3 R was the most heavily expressed isoform at the protein level and was concentrated apically, whereas the type I and type II isoforms were expressed more uniformly. The type III InsP 3 R was expressed even more heavily in NRC cells but was concentrated apically in these cells as well.
Adenosine triphosphate (ATP), which increases Ca
Acute lung injury is a frequent and treatment-limiting consequence of therapy with hyperoxic gas mixtures. To determine if IL-11 is protective in oxygen toxicity, we compared the effects of 100% O2 on transgenic mice that overexpress IL-11 in the lung and transgene (-) controls. IL-11 markedly enhanced survival in 100% O2 with 100% of transgene (-) animals dying within 72-96 h and > 90% of transgene (+) animals surviving for more than 10 d. This protection was associated with markedly diminished alveolar-capillary protein leak, endothelial and epithelial membrane injury, lipid peroxidation, and pulmonary neutrophil recruitment. Significant differences in copper zinc superoxide dismutase and catalase activities were not noted and the levels of total, reduced and oxidized glutathione were similar in transgene (+) and (-) animals. Glutathione reductase, glutathione peroxidase, and manganese superoxide dismutase activities were slightly higher in transgene (+) as versus (-) mice after 100% O2 exposure, and IL-11 diminished hyperoxia-induced expression of IL-1 and TNF. Hyperoxia also caused cell death with DNA fragmentation in the lungs of transgene (-) animals and IL-11 markedly diminished this cell death response. These studies demonstrate that IL-11 markedly diminishes hyperoxic lung injury. They also demonstrate this protection is associated with small changes in lung antioxidants, diminished hyperoxia-induced IL-1 and TNF production, and markedly suppressed hyperoxia-induced DNA fragmentation.
An inside-alkaline pH gradient (pH 7.7 inside, 5.5 outside) stimulated Cl uptake in brush-border vesicles from rabbit ileum. The addition of HCO3 without changing the pH gradient further stimulated Cl uptake to a level fourfold greater than equilibrated Cl uptake. Although a K diffusion potential stimulated Cl uptake, this was insensitive to inhibition by 4,4-diisothiocyanostilbene-2,2'-disulfonate (DIDS), whereas pH and HCO3 gradient-stimulated Cl uptake was inhibited by DIDS. pH and HCO3 gradient-stimulated Cl uptake was found to be a saturable function of the Cl concentration with a Km of 3.5 mM and a Vmax of 49 nmol X mg prot-1 X min-1. To distinguish between coupling of Na and Cl transport by cotransport or dual exchange (Na-H and Cl-HCO3 exchange), we determined uptake with high (134 mM Tris-HEPES-MES) internal buffer and low (1.34 mM Tris-HEPES-MES) internal buffer concentrations. Inwardly directed gradients of 50 mM Na, 50 mM K, or 50 mM Na and K did not stimulate Cl uptake, and 50 mM Cl, 50 mM K, or 50 mM KCl did not stimulate Na uptake, with high internal buffer, excluding cotransport. In contrast, 50 mM Na stimulated Cl uptake (inhibited by 1 mM DIDS) and 50 mM Cl stimulated Na uptake (inhibited by 1 mM amiloride) in low buffer media. To determine a role for carbonic anhydrase, Na-stimulated Cl uptake was determined in low buffer media, equilibrated with either 100% N2 or 95% N2-5% CO2. Na stimulated Cl uptake 80% (compared with trimethylammonium control) with CO2 but only 30% with N2 (P less than 0.05). Acetazolamide partially inhibited (P less than 0.025) the stimulation of Cl uptake with CO2 but not with N2. Carbonic anhydrase activity was measured in homogenate and brush-border membrane and was enriched 7.9 +/- 0.4-fold, whereas sucrase was enriched 14.0 +/- 1.1-fold. We conclude that coupled Na and Cl transport occurs by dual exchange (Na-H and Cl-HCO3) and carbonic anhydrase, apparently located on the brush-border membrane, facilitates dual exchange by providing HCO3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.