Out-of-hospital cardiac arrest is a significant public health issue and treatment, namely, cardiopulmonary resuscitation and defibrillation, is very time-sensitive. Public access defibrillation programs, which deploy automated external defibrillators (AEDs) for bystander use in an emergency, reduce the time to defibrillation and improve survival rates. In this paper, we develop models to guide the deployment of public AEDs. Our models generalize existing location models and incorporate differences in bystander behavior. We formulate three mixed integer nonlinear models and derive equivalent integer linear reformulations or easily computable bounds. We use kernel density estimation to derive a spatial probability distribution of cardiac arrests that is used for optimization and model evaluation. Using data from Toronto, Canada, we show that optimizing AED deployment outperforms the existing approach by 40% in coverage and substantial gains can be achieved through relocating existing AEDs. Our results suggest that improvements in survival and cost-effectiveness are possible with optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.