Sporadic Alzheimer’s disease (AD) is the most common cause of dementia. However, representative experimental models of AD have remained difficult to produce because of the disease’s uncertain origin. The Polycomb group protein BMI1 regulates chromatin compaction and gene silencing. BMI1 expression is abundant in adult brain neurons but down-regulated in AD brains. We show here that mice lacking one allele of Bmi1 (Bmi1+/−) develop normally but present with age cognitive deficits and neurodegeneration sharing similarities with AD. Bmi1+/− mice also transgenic for the amyloid beta precursor protein died prematurely and present aggravated disease. Loss of heterochromatin and DNA damage response (DDR) at repetitive DNA sequences were predominant in Bmi1+/− mouse neurons and inhibition of the DDR mitigated the amyloid and Tau phenotype. Heterochromatin anomalies and DDR at repetitive DNA sequences were also found in AD brains. Aging Bmi1+/− mice may thus represent an interesting model to identify and study novel pathogenic mechanisms related to AD.
Glioblastoma multiforme (GBM) is an incurable primary brain tumor containing a sub-population of cancer stem cells (CSCs). Polycomb Repressive Complex (PRC) proteins BMI1 and EZH2 are enriched in CSCs, promoting clonogenic growth and resistance to genotoxic therapies. We report here that when used at appropriate concentrations, pharmaceutical inhibitors of BMI1 could efficiently prevent GBM colony growth and CSC self-renewal in vitro and significantly extend lifespan in terminally ill tumor-bearing mice. Notably, molecular analyses revealed that the commonly used PTC596 molecule targeted both BMI1 and EZH2, possibly providing beneficial therapeutic effects in some contexts. On the other hand, treatment with PTC596 resulted in instant reactivation of EZH2 target genes and induction of a molecular program of epithelial-mesenchymal transition (EMT), possibly explaining the modified phenotype of some PTC596-treated tumors. Treatment with a related but more specific BMI1 inhibitor resulted in tumor regression and maintenance of cell identity. We conclude that inhibition of BMI1 alone is efficient at inducing GBM regression, and that dual inhibition of BMI1 and EZH2 using PTC596 may be also beneficial but only in specific contexts.
Background: BMI1 silences the expression of genes located at the facultative heterochromatin. Results: BMI1 is abundant at repetitive genomic regions, including the pericentromeric heterochromatin (PCH), where it is required for compaction and silencing. Conclusion: BMI1 is essential for PCH formation. Significance: BMI1 function at PCH is important to understand how BMI1 regulates genomic stability.
DNA sequences containing consecutive guanines organized in 4-interspaced tandem repeats can form stable single-stranded secondary structures, called G-quadruplexes (G4). Herein, we report that the Polycomb group protein BMI1 is enriched at heterochromatin regions containing putative G4 DNA sequences, and that G4 structures accumulate in cells with reduced BMI1 expression and/or relaxed chromatin, including sporadic Alzheimer’s disease (AD) neurons. In AD neurons, G4 structures preferentially accumulate in lamina-associated domains, and this is rescued by re-establishing chromatin compaction. ChIP-seq analyses reveal that G4 peaks correspond to evolutionary conserved Long Interspersed Element-1 (L1) sequences predicted to be transcriptionally active. Hence, G4 structures co-localize with RNAPII, and inhibition of transcription can reverse the G4 phenotype without affecting chromatin’s state, thus uncoupling both components. Intragenic G4 structures affecting splicing events are furthermore associated with reduced neuronal gene expression in AD. Active L1 sequences are thus at the origin of most G4 structures observed in human neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.