Majorana zero-modes-a type of localized quasiparticle-hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e/h, with a recent observation of a peak height close to 2e/h. Here we report a quantized conductance plateau at 2e/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.
Semiconductor nanowires provide an ideal platform for various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought in contact with a superconductor 1,2 . To fully exploit the potential of non-Abelian anyons for topological quantum computing, they need to be exchanged in a wellcontrolled braiding operation 3-8 . Essential hardware for braiding is a network of singlecrystalline nanowires coupled to superconducting islands. Here, we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks having a predefined number of superconducting islands.Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire "hashtags" reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase coherent system with strong spin-orbit coupling. In addition, a 2 proximity-induced hard superconducting gap is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens new avenues for the realization of epitaxial 3-dimensional quantum device architectures.Majorana Zero Modes (MZMs) are predicted to emerge once a superconductor (SC) is coupled to a semiconductor nanowire (NW) with a strong spin-orbit interaction (SOI) in an external magnetic field 1,2 . InSb NWs are a prime choice for this application due to the large Landé g-factor (~50) and strong Rashba SOI 9 , crucial for realization of MZMs. In addition, InSb nanowires generally show high mobility and ballistic transport [10][11][12] . Indeed, signatures of Majorana zero modes (MZMs) have been detected in hybrid superconductor-semiconductor InSb and InAs NW systems 11,[13][14][15] . Multiple schemes for topological quantum computing based on braiding of MZMs have been reported, all employing hybrid NW networks 3-8 .Top-down fabrication of InSb NW networks is an attractive route towards scalability 16 , however, the large lattice mismatch between InSb and insulating growth substrates limits the crystal quality. An alternative approach is bottom-up synthesis of out-of-plane NW networks which, due to their large surface-to-volume ratio, effectively relieve strain on their sidewalls, enabling the growth of single-crystalline NWs on highly lattice-mismatched substrates [17][18][19] .Recently, different schemes have been reported for merging NWs into networks [20][21][22] .Unfortunately, these structures are either not single-crystalline, due to a mismatch of the crystal structure of the wires with that of the substrate (i.e. hexagonal NWs on a cubic substrate) 22 , or the yield is low due to the limited control over the multiple accessible growth directions (the yield decreases with the number of junctions in the network) 23 ....
We study the effect of external electric fields on superconductor-semiconductor coupling by measuring the electron transport in InSb semiconductor nanowires coupled to an epitaxially grown Al superconductor. We find that the gate voltage induced electric fields can greatly modify the coupling strength, which has consequences for the proximity induced superconducting gap, effective g-factor, and spin-orbit coupling, which all play a key role in understanding Majorana physics. We further show that level repulsion due to spin-orbit coupling in a finite size system can lead to seemingly stable zero bias conductance peaks, which mimic the behavior of Majorana zero modes. Our results improve the understanding of realistic Majorana nanowire systems. gate induced electric fields. Due to the change in coupling, the renormalization of material parameters is altered, as evidenced by a change in the effective g-factor of the hybrid system. Furthermore, the electric field is shown to affect the spin-orbit interaction, revealed by a change in the level repulsion between Andreev states. Our experimental findings are corroborated by numerical simulations. Experimental set-upWe have performed tunneling spectroscopy experiments on four InSb-Al hybrid nanowire devices, labeled A-D, all showing consistent behavior. The nanowire growth procedure is described in [20]. A scanning electron micrograph (SEM) of device A is shown in figure 1(a). Figure 1(b) shows a schematic of this device and the measurement set-up. For clarity, the wrap-around tunnel gate, tunnel gate dielectric and contacts have been removed on one side. A normal-superconductor (NS) junction is formed between the part of the nanowire covered by a thin shell of aluminum (10 nm thick, indicated in green, S), and the Cr /Au contact (yellow, N). The transmission of the junction is controlled by applying a voltage V Tunnel to the tunnel gate (red), galvanically isolated from the nanowire by 35 nm of sputtered SiN x dielectric. The electric field is induced by a global back gate voltage V BG , except in the case of device B, where this role is played by the side gate voltage V SG . Further details on device fabrication and design are included in appendices A and B. To obtain information about the density of states (DOS) in the proximitized nanowire, we measure the differential conductance dI/dV Bias as a function of applied bias voltage V Bias . In the following, we will label this quantity as dI/dV for brevity. A magnetic field is applied along the nanowire direction (x-axis in figures 1(b), (c)). All measurements are performed in a dilution refrigerator with a base temperature of 20 mK. Theoretical modelThe device geometry used in the simulation is shown in figure 1(c). We consider a nanowire oriented along the x-direction, with a hexagonal cross-section in the yz-plane. The hybrid superconductor-nanowire system is described by the Bogoliubov-de Gennes (BdG) Hamiltonian
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.