In the past two decades, a large body of evidence has established a causative role for the beta-amyloid peptide (Abeta) in Alzheimer's disease (AD). However, recent debate has focused on whether amyloid fibrils or soluble oligomers of Abeta are the main neurotoxic species that contribute to neurodegeneration and dementia. Considerable early evidence has indicated that amyloid fibrils are toxic, but some recent studies support the notion that Abeta oligomers are the primary neurotoxins. While this crucial aspect of AD pathogenesis remains controversial, effective therapeutic strategies should ideally target both oligomeric and fibrillar species of Abeta. Here, we describe the anti-amyloidogenic and neuroprotective actions of some di- and tri-substituted aromatic compounds. Inhibition of the formation of soluble Abeta oligomers was monitored using a specific antibody-based assay that discriminates between Abeta oligomers and monomers. Thioflavin T and electron microscopy were used to screen for inhibitors of fibril formation. Taken together, these results led to the identification of compounds that more effectively block Abeta oligomerization than fibrillization. It is significant that such compounds completely blocked the neurotoxicity of Abeta to rat hippocampal neurons in culture. These findings provide a basis for the development of novel small molecule Abeta inhibitors with potential applications in AD.
Nitric oxide (NO), a recently discovered neurotransmitter, has been shown to have a cytostatic effect on cultured glia. A NO-generating agent, S-nitroso-N-acetylpenicillamine (SNAP), was used to treat C6 glioma and primary cortical astrocytes. The levels of a monobasic peptide-processing enzyme activity and carboxypeptidase E activity were examined. The cellular levels of these two enzymes are specifically reduced in response to treatment with SNAP. A decrease of -30-50% in these two enzyme activities was seen in both primary astrocytes and C6 glioma cells. This decrease in cellular enzyme activities is not due to increased secretion because the secreted activity is also reduced in response to SNAP treatment in both the glioma cells and the primary astrocytes. Removal of SNAP treatment causes the carboxypeptidase enzyme activity to return to control levels within 3 days. Northern and western blot analyses indicate that the reduced cellular level of carboxypeptidase E is not due to reduced expression of the messenger RNA or protein, suggesting that the SNAP treatment is affecting factors that influence carboxypeptidase E activity. Taken together, these results imply that NO is involved in the regulation of peptide biosynthetic enzymes and this could lead to the antimitogenic action of SNAP on glia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.