The
recent crystal structures of CC chemokine receptors 2 and 9
(CCR2 and CCR9) have provided structural evidence for an allosteric,
intracellular binding site. The high conservation of residues involved
in this site suggests its presence in most chemokine receptors, including
the close homologue CCR1. By using [3H]CCR2-RA-[R], a high-affinity, CCR2 intracellular ligand, we report
an intracellular binding site in CCR1, where this radioligand also
binds with high affinity. In addition, we report the synthesis and
biological characterization of a series of pyrrolone derivatives for
CCR1 and CCR2, which allowed us to identify several high-affinity
intracellular ligands, including selective and potential multitarget
antagonists. Evaluation of selected compounds in a functional [35S]GTPγS assay revealed that they act as inverse agonists
in CCR1, providing a new manner of pharmacological modulation. Thus,
this intracellular binding site enables the design of selective and
multitarget inhibitors as a novel therapeutic approach.
Diacylglycerol lipases (DAGL) are responsible for the biosynthesis of the endocannabinoid 2-arachidonoylglycerol. The fluorescent activity-based probes DH379 and HT-01 have been previously shown to label DAGLs and to cross-react with the serine hydrolase ABHD6. Here, we report the synthesis and characterization of two new quenched activity-based probes 1 and 2, the design of which was based on the structures of DH379 and HT-01, respectively. Probe 1 contains a BODIPY-FL and a 2,4-dinitroaniline moiety as a fluorophore-quencher pair, whereas probe 2 employs a Cy5-fluorophore and a cAB40-quencher. The fluorescence of both probes was quenched with relative quantum yields of 0.34 and 0.0081, respectively. The probes showed target inhibition as characterized in activity-based protein profiling assays using human cell- and mouse brain lysates, but were unfortunately not active in living cells, presumably due to limited cell permeability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.