A study was conducted to investigate the effect of mannan oligosaccharide (MOS) on the gut microbiota and intestinal morphology of rainbow trout under commercial farming conditions. Juvenile (mean initial BW 38.2 +/- 1.7 g) and subadult (111.7 +/- 11.6 g) trout were fed 2 dietary treatments for 111 and 58 d, respectively. The control treatment consisted of a standard commercial diet, and the MOS treatment consisted of the control diet supplemented with 0.2% MOS. Morphology of the anterior and the posterior intestine was examined with light and electron microscopy. Light microscopy demonstrated increased gut absorptive surface area in the subadult MOS group. Additionally, electron microscopy revealed an increase in microvilli length and density in the subadult MOS group compared with the control (P < 0.05). However, no significant improvements were detected in the juvenile group. Culture-based evaluation of the intestinal microbiota showed that MOS significantly reduced (P < 0.05) the viable intestinal bacterial populations (by approximately 2 log scales in all cases). Levels of Aeromonas/Vibrio spp. were significantly decreased (P < 0.05) in the juvenile MOS group (9% of the total microbiota) compared with the juvenile control group (37%). Additionally, analysis of microbial communities was conducted using denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA. The denaturing gradient gel electrophoresis fingerprinting revealed an alteration of bacterial populations; analysis of similarity, similarity percentages, and nonmetric multidimensional scaling analysis showed that MOS reduced species richness and increased similarity of bacterial populations found within the subadult and juvenile groups. The current study shows that MOS modulates intestinal microbial communities, which subsequently improve gut morphology and epithelial brush border.
Pax-3 is a paired domain transcription factor that plays many roles during vertebrate development. In the Schwann cell lineage, Pax-3 is expressed at an early stage in Schwann cells precursors of the embryonic nerve, is maintained in the nonmyelinating cells of the adult nerve, and is upregulated in Schwann cells after peripheral nerve injury. Consistent with this expression pattern, Pax-3 has previously been shown to play a role in repressing the expression of the myelin basic protein gene in Schwann cells. We have studied the role of Pax-3 in Schwann cells and have found that it controls not only the regulation of cell differentiation but also the survival and proliferation of Schwann cells. Pax-3 expression blocks both the induction of Oct-6 and Krox-20 (K20) by cyclic AMP and completely inhibits the ability of K20, the physiological regulator of myelination in the peripheral nervous system, to induce myelin gene expression in Schwann cells. In contrast to other inhibitors of myelination, we find that Pax-3 represses myelin gene expression in a c-Junindependent manner. In addition to this, we find that Pax-3 expression alone is sufficient to inhibit the induction of apoptosis by TGFβ1 in Schwann cells. Expression of Pax-3 is also sufficient to induce the proliferation of Schwann cells in the absence of added growth factors and to reverse K20-induced exit from the cell cycle. These findings indicate new roles for the Pax-3 transcription factor in controlling the differentiation and proliferation of Schwann cells during development and after peripheral nerve injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.