The interaction between multivalent ions and lipid membranes with saturated tails and dipolar (net neutral) headgroups can lead to adsorption of the ions onto the membrane. The ions charge the membranes and contribute to electrostatic repulsion between them, in a similar manner to membranes containing charged lipids. Using solution X-ray scattering and the osmotic stress method, we measured and modeled the pressure-distance curves between partially charged membranes containing mixtures of charged (1,2-dilauroyl-sn-glycero-3-phospho-l-serine, DLPS) and dipolar (1,2-dilauroyl-sn-glycero-3-phosphocholine, DLPC) lipids over a wide range of membrane charge densities. We then compared these pressure-distance curves with those of DLPC membranes in the presence of 10 mM CaCl. Our data and modeling show that when low osmotic stress is applied to the DLPC bilayers, the membrane charge density is equivalent to that of a charged membrane containing ca. 4 mol % DLPS and 96 mol % DLPC. As the osmotic stress increased, the charge density of the DLPC membrane decreased and resembled that of a membrane containing ca. 1 mol % DLPS. These data are consistent with desorption of the calcium ions from the DLPC membrane with increasing osmotic stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.