2-Cys peroxiredoxins (Prxs) are a large and diverse family of peroxidases which, in addition to their antioxidant functions, regulate cell signaling pathways, apoptosis, and differentiation. These enzymes are obligate homodimers (alpha(2)), utilizing a unique intermolecular redox-active disulfide center for the reduction of peroxides, and are known to form two oligomeric states: individual alpha(2) dimers or doughnut-shaped (alpha(2))(5) decamers. Here we characterize both the oligomerization properties and crystal structure of a bacterial 2-Cys Prx, Salmonella typhimurium AhpC. Analytical ultracentrifugation and dynamic light scattering show that AhpC's oligomeric state is redox linked, with oxidization favoring the dimeric state. The 2.5 A resolution crystal structure (R = 18.5%, R(free) = 23.9%) of oxidized, decameric AhpC reveals a metastable oligomerization intermediate, allowing us to identify a loop that adopts distinct conformations associated with decameric and dimeric states, with disulfide bond formation favoring the latter. This molecular switch contains the peroxidatic cysteine and acts to buttress the oligomerization interface in the reduced, decameric enzyme. A structurally detailed catalytic cycle incorporating these ideas and linking activity to oligomeric state is presented. Finally, on the basis of sequence comparisons, we suggest that the enzymatic and signaling activities of all 2-Cys Prxs are regulated by a redox-sensitive dimer to decamer transition.
The purpose of this investigation was to determine what structural changes convert "inert" alphaIIbbeta3 integrins into "activated" high-affinity receptors for adhesive proteins. Light scattering, analytical ultracentrifugation, electron microscopy, and molecular modeling were used to probe the conformational states of the alphaIIbbeta3 integrin. Isolated from human blood platelets in octyl glucoside, the alphaIIbbeta3 complex behaved as an asymmetric 230 kDa macromolecule with a z-average translational diffusion coefficient of 2.9 F and a weight-average sedimentation coefficient of 7.7 S. Dynamic light scattering showed that ligand-mimetic peptides (RGDX, X = F, W, S) caused prompt, concentration-dependent increases in the Stokes radius (R(s)) of the alphaIIbbeta3 complex, whereas control peptides of reversed sequence (XDGR, X = F, W, S) had no significant effect. Sedimentation velocity data coupled with time-derivative analyses showed that RGDX peptides shifted the distribution of alphaIIbbeta3 sedimenting species toward smaller s values. Sedimentation equilibrium measurements indicated that a slower increase in the alphaIIbbeta3 molecular weight distribution took place in the presence of RGDX ligand-mimetics. Electron microscopy showed a split of alphaIIbbeta3's globular domain into two distinct nodules in the presence of RGDX peptides; oligomers joined through their stalk regions were seen frequently. These observations suggest that receptor occupancy by ligand-mimetic RGDX peptides is tightly coupled to relatively large changes in the structure of the alphaIIbbeta3 complex. alphaIIbbeta3 bead models were developed to describe quantitatively the ligand-induced transition from a "closed" to an "open" integrin conformation and the limited oligomerization that follows. This provides a new mechanistic framework for understanding integrin activation and the formation of signaling clusters on the surface of stimulated platelets.
According to the current hypothesis, in fibrinogen, the COOH-terminal portions of two Aα chains are folded into compact αC-domains that interact intramolecularly with each other and with the central region of the molecule; in fibrin, the αC-domains switch to an intermolecular interaction resulting in αC polymers. In agreement, our recent NMR study identified within the bovine fibrinogen Aα374-538 αC-domain fragment an ordered compact structure including a β-hairpin restricted at the base by a 423-453 disulfide linkage. To establish the complete structure of the αC-domain and to further test the hypothesis, we expressed a shorter αC-fragment, Aα406-483, and performed detailed analysis of its structure, stability, and interactions. NMR experiments on the Aα406-483 fragment identified a second loose β-hairpin formed by residues 459-476, yielding a structure consisting of an intrinsically unstable mixed parallel/anti-parallel β-sheet. Size-exclusion chromatography and sedimentation velocity experiments revealed that the Aα406-483 fragment forms soluble oligomers whose fraction increases with increasing concentration. This was confirmed by sedimentation equilibrium analysis, which also revealed that the addition of each monomer to an assembling αC oligomer substantially increases its stabilizing free energy. In agreement, unfolding experiments monitored by CD established that oligomerization of Aα406-483 results in increased thermal stability. Altogether, these experiments establish the complete NMR solution structure of the Aα406-483 αC-domain fragment, provide direct evidence for the intra-and intermolecular interactions between the αC-domains, and confirm that these interactions are thermodynamically driven.Fibrinogen is a multidomain plasma protein whose major function is to form fibrin clots that prevent the loss of blood upon vascular injury. In addition to its prominent role in haemostasis, fibrinogen also contributes to wound healing and participates in a number of other physiological and pathological processes through the interaction of its multiple regions/ domains with various proteins and cell types. The three-dimensional structure of most of these regions has been established by crystallographic studies of proteolytically derived and recombinant fragments of human and bovine fibrinogen (1-4). The crystal structures of a proteolytically truncated bovine fibrinogen and intact chicken fibrinogen have also been solved † This work was supported by National Institutes of Health Grant HL-56051 to L.M., American Heart Association, Mid-Atlantic Affiliate Grant-in-Aid 055527U to R.R.H., and by the Intramural Research Program of the NIH, National Heart, Lung, and Blood Institute to N.T. *To whom correspondence should be addressed. Leonid Medved. 402-3404. NIH Public Access Author ManuscriptBiochemistry. Author manuscript; available in PMC 2008 December 8. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript (5,6). However, the COOH-terminal regions of two fibrin(ogen) Aα ch...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.