The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.
The most noticeable morphological feature of the cerebellum is its folded appearance, whereby fissures separate its anterior-posterior extent into lobules. Each lobule is molecularly coded along the medial-lateral axis by parasagittal stripes of gene expression in one cell type, the Purkinje cells (PCs). Additionally, within each lobule distinct combinations of afferents terminate and supply the cerebellum with synchronized sensory and motor information. Strikingly, afferent terminal fields are organized into parasagittal domains, and this pattern bears a close relationship to PC molecular coding. Thus, cerebellum three-dimensional complexity obeys a basic coordinate system that can be broken down into morphology and molecular coding. In this review, we summarize the sequential stages of cerebellum development that produce its laminar structure, foliation, and molecular organization. We also introduce genes that regulate morphology and molecular coding, and discuss the establishment of topographical circuits within the context of the two coordinate systems. Finally, we discuss how abnormal cerebellar organization may result in neurological disorders like autism.
The adult mammalian cerebellar cortex is generally assumed to have a uniform cytoarchitecture. Differences in cerebellar function are thought to arise, in the main, through distinct patterns of input and output connectivity, rather than as a result of variations in cortical microcircuitry. However, evidence from anatomical, physiological and genetic studies is increasingly challenging this orthodoxy and there are now various lines of evidence that the cerebellar cortex is non uniform. Here we develop the hypothesis that regional differences in cerebellar cortical microcircuit properties lead to important differences in information processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.