COVID-19 has led to a pandemic, affecting almost all countries in a few months. In this work, we applied selected deep learning models including multilayer perceptron, random forest, and different versions of long short-term memory (LSTM), using three data sources to train the models, including COVID-19 occurrences, basic information like coded country names, and detailed information like population, and area of different countries. The main goal is to forecast the outbreak in nine countries (Iran, Germany, Italy, Japan, Korea, Switzerland, Spain, China, and the USA). The performances of the models are measured using four metrics, including mean average percentage error (MAPE), root mean square error (RMSE), normalized RMSE (NRMSE), and R 2 . The best performance was found for a modified version of LSTM, called M-LSTM (winner model), to forecast the future trajectory of the pandemic in the mentioned countries. For this purpose, we collected the data from January 22 till July 30, 2020, for training, and from 1 August 2020 to 31 August 2020, for the testing phase. Through experimental results, the winner model achieved reasonably accurate predictions (MAPE, RMSE, NRMSE, and R 2 are 0.509, 458.12, 0.001624, and 0.99997, respectively). Furthermore, we stopped the training of the model on some dates related to main country actions to investigate the effect of country actions on predictions by the model.
The novel corona-virus (COVID-19) has led to a pandemic, affecting almost all countries and regions in a few weeks, and therefore a global plan is needed to overcome this battle. Iran has been among the first few countries that has been affected severely, after China, which forced the government to put some restriction and enforce social distancing in majority of the country. In less than 2 months, Iran has more than 80,000 confirmed cases, and more than 5,000 death. Based on the official statistics from Iran's government, the number of daily cases has started to go down recently, but many people believe if the lockdown is lifted without proper social distancing enforcement, there is a possibility for a second wave of COVID-19 cases. In this work, we analyze at the data for the number cases in Iran in the past few weeks, and train a predictive model to estimate the possible future trends for the number of cases in Iran, depending on the government policy in the coming weeks and months. Our analysis may help political leaders and health officials to take proper action toward handling COVID-19 in the coming months.PVLDB Reference Format:
The coronavirus COVID-19 is affecting 213 countries and territories around the world. Iran was one of the first affected countries by this virus. Isfahan, as the third most populated province of Iran, experienced a noticeable epidemic. The prediction of epidemic size, peak value, and peak time can help policymakers in correct decisions. In this study, deep learning is selected as a powerful tool for forecasting this epidemic in Isfahan. A combination of effective Social Determinant of Health (SDH) and the occurrences of COVID-19 data are used as spatiotemporal input by using time-series information from different locations. Different models are utilized, and the best performance is found to be for a tailored type of long short-term memory (LSTM). This new method incorporates mutual effect of all classes (confirmed/ death / recovered) in predication process. The future trajectory of the outbreak in Isfahan is forecasted with the proposed model. The paper demonstrates the positive effect of adding SDHs in pandemic prediction. Furthermore, the effectiveness of different SDHs is discussed, and the most effective terms are introduced. The method expresses high ability in both short- and long- term forecasting of the outbreak. The model proves that in predicting one class (like the number of confirmed cases), the effect of other accompanying numbers (like death and recovered cases) cannot be ignored. In conclusion, the superiorities of this model (particularity the long term predication ability) turn it into a reliable tool for helping the health decision makers.
The choroidal vascularity index (CVI) is a new biomarker defined for retinal optical coherence tomography (OCT) images for measuring and evaluating the choroidal vascular structure. The CVI is the ratio of the choroidal luminal area (LA) to the total choroidal area (TCA). The automatic calculation of this index is important for ophthalmologists but has not yet been explored. In this study, we proposed a fully automated method based on deep learning for calculating the CVI in three main steps: 1—segmentation of the choroidal boundary, 2—detection of the choroidal luminal vessels, and 3—computation of the CVI. The proposed method was evaluated in complex situations such as the presence of diabetic retinopathy and pachychoroid spectrum. In pachychoroid spectrum, the choroid is thickened, and the boundary between the choroid and sclera (sclerochoroidal junction) is blurred, which makes the segmentation more challenging. The proposed method was designed based on the U-Net model, and a new loss function was proposed to overcome the segmentation problems. The vascular LA was then calculated using Niblack’s local thresholding method, and the CVI value was finally computed. The experimental results for the segmentation stage with the best-performing model and the proposed loss function used showed Dice coefficients of 0.941 and 0.936 in diabetic retinopathy and pachychoroid spectrum patients, respectively. The unsigned boundary localization errors in the presence of diabetic retinopathy were 3 and 20.7 μm for the BM boundary and sclerochoroidal junction, respectively. Similarly, the unsigned errors in the presence of pachychoroid spectrum were 21.6 and 76.2 μm for the BM and sclerochoroidal junction, respectively. The performance of the proposed method to calculate the CVI was evaluated; the Bland–Altman plot indicated an acceptable agreement between the values allocated by experts and the proposed method in the presence of diabetic retinopathy and pachychoroid spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.