PurposeLower urinary tract symptoms (LUTS) are bothersome constellation of voiding symptoms in men and women as they age. Multiple factors and comorbidities are attributed to this problem but underlying mechanisms of nonobstructive nonneurogenic detrusor overactivity, detrusor underactivity and LUTS remain largely unknown. Our goal was to characterize detrusor function and voiding patterns in relation to muscarinic receptors expression, nerve fiber density, and neural ultrastructure in chronic bladder ischemia.Materials and MethodsIliac artery atherosclerosis and bladder ischemia were produced in male Sprague-Dawley rats. At 8 and 16 weeks after ischemia, micturition patterns and cystometrograms were recorded in conscious rats then bladder blood flow and nonvoiding spontaneous contractions were measured under general anesthesia. Bladder tissues were processed for Western blotting, immunostaining, and transmission electron microscopy.ResultsBladder responses to ischemic insult depended on the duration of ischemia. Micturition patterns and cystometric changes at 8-week ischemia suggested detrusor overactivity, while voiding behavior and cystometrograms at 16-week ischemia implied abnormal detrusor function resembling underactivity. Upregulation of muscarinic M2 receptor was found after 8- and 16 weeks of ischemia. Downregulation of M3 and upregulation of M1 were detected at 16-week ischemia. Neural structural damage and marked neurodegeneration were found after 8 and 16 weeks of ischemia, respectively.ConclusionsProlonged ischemia may be a mediating variable in progression of overactive bladder to dysfunctional patterns similar to detrusor underactivity. The mechanism appears to involve differential expression of M1, M2, and M3 receptors, neural structural injury, and progressive loss of nerve fibers.
Molecular mechanisms underlying bladder dysfunction in ischemia, particularly at the protein and protein modification levels and downstream pathways, remain largely unknown. Here we describe a comparison of protein sequence variations in the ischemic and normal bladder tissues by measuring the mass differences of the coding amino acids and actual residues crossing the proteome. A large number of nonzero delta masses (11,056) were detected, spanning over 1295 protein residues. Clustering analysis identified 12 delta mass clusters that were significantly dysregulated, involving 30 upregulated (R2 > 0.5, ratio > 2, p < 0.05) and 33 downregulated (R2 > 0.5, ratio < −2, p < 0.05) proteins in bladder ischemia. These protein residues had different mass weights from those of the standard coding amino acids, suggesting the formation of non-coded amino acid (ncAA) residues in bladder ischemia. Pathway, gene ontology, and protein–protein interaction network analyses of these ischemia-associated delta-mass containing proteins indicated that ischemia provoked several amino acid variations, potentially post-translational modifications, in the contractile proteins and stress response molecules in the bladder. Accumulation of ncAAs may be a novel biomarker of smooth muscle dysfunction, with diagnostic potential for bladder dysfunction. Our data suggest that systematic assessment of global protein modifications may be crucial to the characterization of ischemic conditions in general and the pathomechanism of bladder dysfunction in ischemia.
Introduction The etiology of lower urinary tract symptoms in patients with non-obstructed non-neurogenic bladder remains largely unknown. Clinical studies divulged a significant correlation between reduced bladder blood flow and low bladder compliance. Animal models of bladder ischemia displayed structural modifications, characterized by loss of smooth muscle cells and accumulation of connective tissue in the bladder wall. The underlying mechanisms contributing to structural damage in bladder ischemia remain largely elusive. We previously reported that structural modifications in bladder ischemia correlate with upregulated stress proteins and cell survival signaling, suggesting the potential role of cellular stress in ischemic damage. However, stress response molecules and downstream pathways eliciting bladder damage in ischemia remain largely undetermined. Methods Using a rat model of bladder ischemia along with a cell culture hypoxia model, we investigated stress signaling molecules in the ischemic bladder tissues and hypoxic bladder smooth muscle cells. Results Our data suggest simultaneous upregulation of two major cellular stress-sensing molecules, namely apoptosis signal-regulating kinase 1 (ASK1) and caspase-3, implying degenerative insult via stress signaling pathway in bladder ischemia. Consistent with bladder ischemia, incubation of cultured human bladder smooth muscle cells at low oxygen tension increased both ASK1 and caspase-3 expression, insinuating hypoxia as an essential factor in ASK1 and caspase-3 upregulation. Gene deletion of ASK1 by ASK1 siRNA in cultured smooth muscle cells prevented caspase-3 upregulation by hypoxia, suggesting caspase-3 regulation by ASK1 under the ischemic/hypoxic conditions. Upregulation of ASK1 and caspase-3 in rat bladder ischemia and human bladder smooth muscle cell hypoxia was associated with subcellular structural modifications consistent with the initial stages of apoptotic insult. Conclusion Our data suggest that stress sensing by ASK1 and caspase-3 may contribute to subcellular structural damage and low bladder compliance. The ASK1/caspase-3 pathway may provide therapeutic targets against cellular stress and degenerative responses in bladder ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.