microRNAs (miRNAs) are known as a large group of short noncoding RNAs, which structurally consist of 19–22 nucleotides in length and functionally act as one of the main regulators of gene expression in important biological and physiological contexts like cell growth, apoptosis, proliferation, differentiation, movement (cell motility), and angiogenesis as well as disease formation and progression importantly in cancer cell invasion, migration, and metastasis. Among these notable tiny molecules, many studies recently presented the important role of the miR‐193 family comprising miR‐193a‐3p, miR‐193a‐5p, miR‐193b‐3p, and miR‐193b‐5p in health and disease biological processes by interaction with special targeting and signaling, which mainly contribute as a tumor suppressor. Therefore, in the present paper, we review the functional role of this miRNA family in both health and disease conditions focusing on various tumor developments, diagnoses, prognoses, and treatment.
microRNAs (miRNAs) are a family of small noncoding RNAs that play a pivotal role in the regulation of main biological and physiological processes, including cell cycle regulation, proliferation, differentiation, apoptosis, stem cell maintenance, and organ development. Dysregulation of these tiny molecules has been related to different human diseases, such as cancer. It has been estimated that more than 50% of these noncoding RNA sequences are placed on fragile sites or cancer‐associated genomic regions. After the discovery of the first specific miRNA signatures in breast cancer, many studies focused on the involvement of these small RNAs in the pathophysiology of breast tumors and their possible clinical implications as reliable prognostic biomarkers or as a new therapeutic approach. Therefore, the present review will focus on the recent findings on the involvement of miRNAs in the biology of breast cancer associated with their clinical implications.
MicroRNAs (miRNAs) are proposed as a family of short noncoding molecules able to manage and control the expression of the gene targets at the posttranscriptional level. They contribute in several fundamental physiological mechanisms as well as a verity of human and animal diseases such as cancer progression. Among these tiny RNAs, miR-451 placed on chromosome 17 at 17q11.2 presents an essential role in many biological processes in health condition and also in pathogenesis of different diseases. Besides, it has been recently considered as a valuable biomarker for cancer detection, prognosis and treatment. Therefore, this review will provide the critical functions of miR-451 on biological mechanisms including cell cycle and proliferation, cell survival and apoptosis, differentiation and development as well as disease initiation and progression such as tumor formation, migration, invasion, and metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.