This paper describes a community effort to improve earlier versions of the full-text corpus of Genomics & Informatics by semi-automatically detecting and correcting PDF-to-text conversion errors and optical character recognition errors during the first hackathon of Genomics & Informatics Annotation Hackathon (GIAH) event. Extracting text from multi-column biomedical documents such as Genomics & Informatics is known to be notoriously difficult. The hackathon was piloted as part of a coding competition of the ELTEC College of Engineering at Ewha Womans University in order to enable researchers and students to create or annotate their own versions of the Genomics & Informatics corpus, to gain and create knowledge about corpus linguistics, and simultaneously to acquire tangible and transferable skills. The proposed projects during the hackathon harness an internal database containing different versions of the corpus and annotations.
Magnetic resonance imaging (MRI) using an ultra-high magnetic field (7 Tesla) enables detailed and non-invasive studies of the function and anatomy of the human visual cortex, which is the brain region responsible for visual signal processing. However, 7T human MRI often suffers from image shading in the occipital region due to the radiofrequency (RF) wave propagation effect. Dedicated visual cortex coils, on the other hand, often lack the capability to visualize the whole brain which is necessary for image registration. We propose a novel RF coil structure in which a 2-channel transmit and receive (TRx) coil is grafted onto the frontal part of a multi-channel transmit-only/receive-only (TORO, 4Tx/14Rx) visual cortex coil. This coil was tested for high-resolution functional MRI with an in-plane resolution of 0.5 mm. The results showed that the proposed coil achieved a higher (×2.5) temporal signal-to-noise ratio (tSNR) in functional imaging of the visual cortex area than that of a commercial 7T whole-head coil. The added 2-channel TRx elements allowed whole-brain edge images to be acquired, enabling successful brain segmentation and atlas registration without the need for a second scan using a whole-head coil. The proposed coil structure can be useful for high-resolution visual functional MRI at very high magnetic fields due to its sensitivity, open geometry, and compatibility with the standard image processing workflow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.