EGFRvIII is a mutant variant of the epidermal growth factor receptor (EGFR) found exclusively in various cancer types. EGFRvIII lacks a large part of the extracellular domain and is unable to bind ligands; however, the receptor is constitutively phosphorylated and able to activate downstream signaling pathways. Failure to attenuate signaling by receptor down-regulation could be one of the major mechanisms by which EGFRvIII becomes oncogenic. Using a cell system expressing either EGFR or EGFRvIII with no expression of other EGFR family members and with endogenous levels of key degradation proteins, we have investigated the down-regulation of EGFRvIII and compared it to that of EGFR. We show that, in contrast to EGFR, EGFRvIII is inefficiently degraded. EGFRvIII is internalized, but the internalization rate of the mutated receptor is significantly less than that of unstimulated EGFR. Moreover, internalized EGFRvIII is recycled rather than delivered to lysosomes. EGFRvIII binds the ubiquitin ligase c-Cbl via Grb2, whereas binding via phosphorylated tyrosine residue 1045 seems to be limited. Despite c-Cbl binding, the receptor fails to become effectively ubiquitinylated. Thus, our results suggest that the long lifetime of EGFRvIII is caused by inefficient internalization and impaired sorting to lysosomes due to lack of effective ubiquitinylation.
Purpose: Small cell lung cancer (SCLC) is a highly malignant disease with poor prognosis, necessitating the need to develop new and efficient treatment modalities. PRIMA-1Met (p53-dependent reactivation of massive apoptosis), also known as APR-246, is a small molecule, which restores tumor suppressor function to mutant p53 and induces cancer cell death in various cancer types. Since p53 is mutated in more than 90% of SCLC, we investigated the ability of PRIMA-1Met to induce apoptosis and inhibit tumor growth in SCLC with different p53 mutations. Experimental Design: The therapeutic effect of PRIMA-1Met/APR-246 was studied in SCLC cells in vitro using cell viability assay, fluorescence-activated cell-sorting analysis, p53 knockdown studies, and Western blot analyses. The antitumor potential of PRIMA-1Met/APR-246 was further evaluated in two different SCLC xenograft models. Results: PRIMA-1Met/APR-246 efficiently inhibited the growth of the SCLC cell lines expressing mutant p53 in vitro and induced apoptosis, associated with increased fraction of cells with fragmented DNA, caspase-3 activation, PARP cleavage, Bax and Noxa upregulation and Bcl-2 downregulation in the cells. The growth suppressive effect of PRIMA-1Met/APR-246 was markedly reduced in SCLC cell lines transfected with p53 siRNA, supporting the role of mutant p53 in PRIMA-1Met/APR-246-induced cell death. Moreover, in vivo studies showed significant antitumor effects of PRIMA-1Met after i.v. injection in SCLC mouse models with no apparent toxicity. Conclusion: This study is the first to show the potential use of p53-reactivating molecules such as PRIMA-1Met/APR-246 for the treatment of SCLC. Clin Cancer Res; 17(9); 2830–41. ©2011 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.