A microring resonator sensor device for sensitive detection of the explosive 1,3,5-trinitrotoluene (TNT) is presented. It is based on the combination of a silicon microring resonator and tailored receptor molecules.
Conventional fiber optic evanescent-field gas sensors are based on a high number of total reflections while the gas is passing the active bare core fiber and of course a suitable laser light source. The use of miniaturized laser sources for sensitive detection of CO(2) in gaseous and water-dissolved phase for environmental monitoring are studied for signal enhancing purposes. Additionally, the fiber optic sensor, consisting of a coiled bare multimode fiber core, was sensitized by an active polymer coating for the detection of explosive TNT. The implementation of ZnO waveguiding nanowires is discussed for surface and sensitivity enhancing coating of waveguiding elements, considering computational and experimental results.
In this Letter, a novel all-polymer arrayed waveguide grating (AWG) device with an operating wavelength around 850 nm is reported. The all-polymer AWG consists of polymer ridge waveguides fabricated on a thin poly(methyl methacrylate) foil via microscope projection photolithography. The developed device is suitable to be integrated into optical circuits, e.g., a planar polymer foil and, along with other optical integrated devices, to be used for different sensing applications. The functionality of the device is demonstrated by using a fiber Bragg grating sensor and performing strain measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.