In this paper first, we prove some new generalizations of Hermite-Hadamard type inequalities for the convex function f and for (s, m)-convex function f in the second sense in conformable fractional integral forms. Second, by using five new integral identities, we present some new Riemann-Liouville fractional trapezoid and midpoint type inequalities. Third, using these results, we present applications to f-divergence measures. At the end, some new bounds for special means of different positive real numbers and new error estimates for the trapezoidal and midpoint formula are provided as well. These results give us the generalizations of the earlier results.
In this paper, a quantum trapezium-type inequality using a new class of function, the so-called generalized ϕ -convex function, is presented. A new quantum trapezium-type inequality for the product of two generalized ϕ -convex functions is provided. The authors also prove an identity for twice q - differentiable functions using Raina’s function. Utilizing the identity established, certain quantum estimated inequalities for the above class are developed. Various special cases have been studied. A brief conclusion is also given.
Abstract. In the present paper, a new class of generalized (r; g, s, m, ϕ)-preinvex functions is introduced and some new integral inequalities for the left hand side of Gauss-Jacobi type quadrature formula involving generalized (r; g, s, m, ϕ)-preinvex functions are given. Moreover, some generalizations of Hermite-Hadamard type inequalities for generalized (r; g, s, m, ϕ)-preinvex functions via Riemann-Liouville fractional integrals are established. These results not only extend the results appeared in the literature (see [1], [2]), but also provide new estimates on these types.
In the present paper, the notion of MT m -preinvex function is introduced and some new integral inequalities involving MT m -preinvex functions along with beta function are given. Moreover, some generalizations of Hermite-Hadamard and Ostrowski type inequalities for MT m -preinvex functions via classical integrals and Riemann-Liouville fractional integrals are established. These results not only extends the results appeared in the literature (see [10], [11], [12]), but also provide new estimates on these types.
In this paper, we first obtain a generalized integral identity for twice local fractional differentiable mappings on fractal sets R α (0 < α ≤ 1) of real line numbers. Then, using twice local fractional differentiable mappings that are in absolute value at certain powers generalized strongly m-convex, we obtain some new estimates on generalization of trapezium-like inequalities. We also discuss some new special cases which can be deduced from our main results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.