We report a method for the regioselective photochemical sp 3 C−H fluorination of acetonide ketals that presents interesting problems in chemical reactivity. The question of why certain products of the reaction are stable while others are not is addressed, as is the question of why only select αethereal hydrogen atoms are targeted in the reaction. We demonstrate that the method can be employed to synthesize unprecedented fluorinated sugars and steroids, and it can also be applied toward the fluorination of carbamates. Though some substrates contain up to eight discrete α-ethereal C−H bonds, we observed site-selectivity in each case, prompting us to investigate potential transition states for the reaction. Finally, a remarkable regiochemical switch upon minor structural modification of a diketal is also analyzed.
N-Cyclopropyl-N-methylaniline (5) is a poor probe for single electron transfer (SET) because the corresponding radical cation undergoes cyclopropane ring opening with a rate constant of only 4.1 × 104 s–1, too slow to compete with other processes such as radical cation deprotonation. The sluggish rate of ring opening can be attributed to either (i) a resonance effect in which the spin and charge of the radical cation in the ring-closed form is delocalized into the phenyl ring, and/or (ii) the lowest energy conformation of the SET product (5 •+) does not meet the stereoelectronic requirements for cyclopropane ring opening. To resolve this issue, a new series of N-cyclopropylanilines were designed to lock the cyclopropyl group into the required bisected conformation for ring opening. The results reveal that the rate constant for ring opening of radical cations derived from 1′-methyl-3′,4′-dihydro-1′H-spiro[cyclopropane-1,2′-quinoline] (6) and 6′-chloro-1′-methyl-3′,4′-dihydro-1′H-spiro[cyclopropane-1,2′-quinoline] (7) are 3.5 × 102 s–1 and 4.1 × 102 s–1, effectively ruling out the stereoelectronic argument. In contrast, the radical cation derived from 4-chloro-N-methyl-N-(2-phenylcyclopropyl)aniline (8) undergoes cyclopropane ring opening with a rate constant of 1.7 × 108 s–1, demonstrating that loss of the resonance energy associated with the ring-closed form of these N-cyclopropylanilines can be amply compensated by incorporation of a radical-stabilizing phenyl substituent on the cyclopropyl group. Product studies were performed, including a unique application of EC–ESI/MS (Electrochemistry/ElectroSpray Ionization Mass Spectrometry) in the presence of 18O2 and H2 18O to elucidate the mechanism of ring opening of 7 •+ and trapping of the resulting distonic radical cation.
Glycomimetics are structural mimics of naturally occurring carbohydrates and represent important therapeutic leads in several disease treatments. However, the structural and stereochemical complexity inherent to glycomimetics often challenges medicinal chemistry efforts and is incompatible with diversity-oriented synthesis approaches. Here, we describe a one-pot proline-catalyzed aldehyde α-functionalization/aldol reaction that produces an array of stereochemically well-defined glycomimetic building blocks containing fluoro, chloro, bromo, trifluoromethylthio and azodicarboxylate functional groups. Using density functional theory calculations, we demonstrate both steric and electrostatic interactions play key diastereodiscriminating roles in the dynamic kinetic resolution. The utility of this simple process for generating large and diverse libraries of glycomimetics is demonstrated in the rapid production of iminosugars, nucleoside analogues, carbasugars and carbohydrates from common intermediates.
An innovative metal-free oxidative protocol for azo compound formation catalyzed by substoichiometric amounts of molecular iodine (2 mol%) is disclosed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.