A synthetic route to planar P-modified polycylic aromatic hydrocarbons (PAHs) is described. The presence of a reactive σ(3),λ(3)-P moiety within the sp(2)-carbon scaffold allows the preparation of a new family of PAHs displaying tunable optical and redox properties. Their frontier molecular orbitals (MOs) are derived from the corresponding phosphole MOs and show extended conjugation with the entire π framework. The coordination ability of the P center allows the coordination-driven assembly of two molecular PAHs onto a Au(I) ion.
Alternative methods, including green synthetic approaches for the preparation of various types of nanoparticles are important to maintain sustainable development. Extracellular or intracellular extracts of fungi are perfect candidates for the synthesis of metal nanoparticles due to the scalability and cost efficiency of fungal growth even on industrial scale. There are several methods and techniques that use fungi-originated fractions for synthesis of gold nanoparticles. However, there is less knowledge about the drawbacks and limitations of these techniques. Additionally, identification of components that play key roles in the synthesis is challenging. Here we show and compare the results of three different approaches for the synthesis of gold nanoparticles using either the extracellular fraction, the autolysate of the fungi or the intracellular fraction of 29 thermophilic fungi. We observed the formation of nanoparticles with different sizes (ranging between 6 nm and 40 nm) and size distributions (with standard deviations ranging between 30% and 70%) depending on the fungi strain and experimental conditions. We found by using ultracentrifugal filtration technique that the size of reducing agents is less than 3 kDa and the size of molecules that can efficiently stabilize nanoparticles is greater than 3 kDa.
In this letter, we present the synthesis of a new family of -extended dithieno[b,f]phosphepines. The Pd-catalyzed direct-arylation allows the introduction of various substituents, which tune the absorption/emission in the visible range as well as the redox properties. All those modifications were rationalized through DFT calculations. The physical properties of ambipolar phosphepine with diphenylamino substituents conduct us to use it as a semiconductor in a p-type organic field-effect transistors (OFETs).
Abstract:The article deals with the synthesis and the physical properties of polyaromatic hydrocarbons containing P-atom at the edge. In particular, the impact of the successive addition of aromatic rings on the electronic properties was investigated by experimental (UV-vis absorption, fluorescence, cyclic voltammetry) and theoretical studies (DFT). The physical properties recorded in solution and in solid state showed that the P-containing PAHs exhibit the expected properties to be used as emitter in WOLEDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.