Homogeneously catalysed reactions can be 'switched on' by activating latent catalysts. Usually, activation is brought about by heat or an external chemical agent. However, activation of homogeneous catalysts with a mechanical trigger has not been demonstrated. Here, we introduce a general method to activate latent catalysts by mechanically breaking bonds between a metal and one of its ligands. We have found that silver(I) complexes of polymer-functionalized N-heterocyclic carbenes, which are latent organocatalysts, catalyse a transesterification reaction when exposed to ultrasound in solution. Furthermore, ultrasonic activation of a ruthenium biscarbene complex with appended polymer chains results in catalysis of olefin metathesis reactions. In each case, the catalytic activity results from ligand dissociation, brought about by transfer of mechanical forces from the polymeric substituents to the coordination bond. Mechanochemical catalyst activation has potential applications in transduction and amplification of mechanical signals, and mechanically initiated polymerizations hold promise as a novel repair mechanism in self-healing materials.
In this feature article, the development of linear quadruple hydrogen bonded systems is discussed, emphasizing applications in supramolecular chemistry and self-assembly.
This review aims to provide a field guide for the implementation of mechanochemistry in synthetic polymers by summarizing the molecules, materials, and methods that have been developed in this field.
The effect of stacking of end groups on the rheological behavior of supramolecular polymer melts is reported. Oscillatory shear experiments in the transition zone from the pseudo rubber plateau to the flow region of telechelic polycaprolactones (PCLs) with ureidopyrimidinone (UPy) end groups directly attached to PCL can be fitted with a single Maxwell element. This demonstrates that dimerization of the UPy groups is unidirectional and that reversible chain scission is faster than reptation. If the UPy groups are connected to the polymer via a urethane linker, a low-frequency plateau in G′ is observed. This is ascribed to the formation of a network of stacked UPy dimers, aided by urethane hydrogen bonding. Below their melting point, these stacks form long fibers in the urethane linked supramolecular poly(methyl caprolactone), which were observed with atomic force microscopy (AFM). Steric hindrance interferes with stacking, since the plateau in G′ is lower in a urethane linked polymer with bulky adamantyl-UPy end groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.