An animal's behaviour is a response to its environment and physiological condition, and as such, gives vital clues as to its well-being, which is highly relevant in conservation issues. Behaviour can generally be typified by body motion and body posture, parameters that are both measurable using animal-attached accelerometers. Interpretation of acceleration data, however, can be complex, as the static (indicative of posture) and dynamic (motion) components are derived from the total acceleration values, which should ideally be recorded in all 3-dimensional axes. The principles of triaxial accelerometry are summarised and discussed in terms of the commonalities that arise in patterns of acceleration across species that vary in body pattern, life-history strategy, and the medium they inhabit. Using tri-axial acceleration data from deployments on captive and free-living animals (n = 12 species), behaviours were identified that varied in complexity, from the rhythmic patterns of locomotion, to feeding, and more variable patterns including those relating to social interactions. These data can be combined with positional information to qualify patterns of area-use and map the distribution of target behaviours. The range and distribution of behaviour may also provide insight into the transmission of disease. In this way, the measurement of tri-axial acceleration can provide insight into individual and population level processes, which may ultimately influence the effectiveness of conservation practice.
Diving reptiles, unlike most diving birds and marnrnals, return infrequently to the surface to breathe. Spending the bulk of their lives underwater, they are likely to have developed a large vanety of specific behavioural patterns different from those of their warm-blooded Counterparts. However, for technical reasons, underwater behaviour of these aquatic reptiles rernains poorly understood. In this study green turtles Chelonia mydas nesting on Cyprus (Eastern Mediterranean) were equipped with multi-channel data loggers monitoring diving behaviour and activity (via a logger-integrated 3-D compass which served as an activity sensor) during the inter-nesting interval. Data from 2 turtles for 2 consecutive inter-nesting intervals were available for detailed dive analysis. Both turtles showed highly variable dive patterns ranging from travelling subsurface dives to specific dive types such as U-(rnainly resting and foraging dives), S-(a form of energy saving swimming) and V-dives. The green turtles stayed near the coast throughout the study, dived no deeper than ca 25 m, but remained underwater for up to ca 40 min The recordings of the activity sensor revealed high activity levels (less than 20% resting d-') during the whole inter-nesting penod which was attributed to extensive foraging. The combination of both the activity data and the dive data showed that the turtles were engaged in traveliing movernents for 46% of the inter-nesting time spent underwater, foraged for 34 % and rested for 1 2 % of the time. We discuss the physiological, ecological and conservation implications of these results.
Albatrosses have among the most remarkable travelling capacities of any extant animal. However, previous studies regarding their movements at sea have mainly focused on breeding birds commuting between the nest site and offshore feeding grounds. In this study, we compare the movement patterns and at-sea activity of breeding and inter-breeding black-browed albatrosses Diomedea melanophris from the Falkland Islands. Data were recorded via global location and activity sensors for 26 incubating birds [during single foraging trips lasting 6.8 d on average) and 6 inter-breeding individuals (during non-stop offshore journeys of 127.5 d on average). Our results showed that foraging black-browed albatrosses utilise vast offshore areas (the average foraging area was 102000 +_ 132 000 km2 by incubating birds and 1552 000 * 970 000 km2 by inter-breeding birds). However, mean forag~ng range was similar in both groups (691 * 330 km and 680 t 192 km by incubating and interbreeding birds, respectively) as were their core foraging areas and their at-sea activity patterns Our results thus indicate that black-browed albatrosses from the Falkland Islands, which represent the largest albatross population world-wide (ca 800 000 individuals), mainly rely on marine resources available within the Patagonian Shelf area. Although this hghly productive continental shelf is the largest of the Southern Hemisphere, rapid development of industrial fisheries currently results in the removal of over 1.4 million tonnes of fish and squid per year in this zone. As our data also show significant spatio-temporal overlap between human and albatross fishing activities within the Patagonian Shelf, we anticipate major detrimental effects on the albatross population in terms of competition for food and additional mortality caused by bird bycatch.
Swimming and diving capabilities of Jackass Penguin Spheniscus demersus were examined. Mean maximum speed over a 10 m course in a rock pool was 12.4 km h-' for breeders, 9.5 km h-' for juveniles and 4.6 km h-' for fledglings. Theoretically fledglings could not swim fast enough to catch adult Cape Anchovies Engraulis capensis, the normal prey of adults. Fledglings probably feed on fish larvae. Moulting penguins swam at speeds comparable to fledglings and did not feed. When travelling to the foraging area, breeding penguins swam at 4.8 km h-'. Maximum theoretical foraging range is 24.2 km, but actual range was < 20 km. Mean duration of dive was 22.3 S inside Saldanha Bay and 146 S outside the bay. During long dives outside Saldanha Bay, penguins were probably foraging. At midday, when most Jackass Penguins are at sea, largest numbers were seen outside the bay in 30 to 40 m depth. Penguins fitted with depth gauges dived routinely to 30 m, but spent most time in the upper water layers. Maximum recorded depth was 130 m. There was a positive correlation between distance swum and amount of food ingested. This suggests that the anchovy on which they feed formed small schools which were encountered frequently.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.