Dry sanitation requires the handling of faeces, which vary in age and degree of transformation. Rheological data are necessary to support the design of equipment to handle faeces. The rheological properties of fresh human faeces were measured using a variable-speed rotational rheometer. Samples were further tested for moisture content, total solids, volatile content, and ash content. Faecal samples were found to have a yield stress; there was a decrease in apparent viscosity with increasing shear rate. For any given shear rate, higher apparent viscosities are associated with lower moisture contents. Across a range of water contents of 58.5% to 88.7%, apparent viscosities of 27 Pa•s to 2 014 Pa•s were measured at a shear rate of 1 s -1 . During constant shear tests, the apparent viscosity of all faeces was found to decrease asymptotically, where the minimum apparent viscosity value increased with decreasing moisture content. A structural recovery test indicates that human faeces are thixotropic in behaviour, where the viscosity permanently decreases to 0.5% of the initial value after a 20 s exposure to a shear rate of 10 s -1 . A linear relationship between viscosity and temperature was found, with a recorded 30.6% decrease in viscosity for a 35.6 °C increase in temperature from 13.4°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.