A growing number of studies demonstrate the benefits of 3D printing in improving surgical efficiency and subsequently clinical outcomes. However, the number of studies evaluating the accuracy of 3D printing techniques remains scarce. All publications appraising the accuracy of 3D printing between 1950 and 2018 were reviewed using well-established databases, including PubMed, Medline, Web of Science and Embase. An in vivo validation study of our 3D printing technique was undertaken using unprocessed chicken radius bones (Gallus gallus domesticus). Calculating its maximum length, we compared the measurements from computed tomography (CT) scans (CT group), image segmentation (SEG group) and 3D-printed (3DP) models (3DP group). Twenty-eight comparison studies in 19 papers have been identified. Published mean error of CT-based 3D printing techniques were 0.46 mm (1.06%) in stereolithography, 1.05 mm (1.78%) in binder jet technology, 0.72 mm (0.82%) in PolyJet technique, 0.20 mm (0.95%) in fused filament fabrication (FFF) and 0.72 mm (1.25%) in selective laser sintering (SLS). In the current in vivo validation study, mean errors were 0.34 mm (0.86%) in CT group, 1.02 mm (2.51%) in SEG group and 1.16 mm (2.84%) in 3DP group. Our Peninsula 3D printing technique using a FFF 3D printer thus produced accuracy similar to the published studies (1.16 mm, 2.84%). There was a statistically significant difference (P<10 −4 ) between the CT group and the latter SEG and 3DP groups indicating that most of the error is introduced during image segmentation stage.
Background: Modern imaging technologies, such as computed tomographic angiography (CTA), can be useful for preoperative assessment in deep inferior epigastric artery perforator (DIEP) flap surgery. Planning perforator flap design can lead to improved surgical efficiency. However, current imaging modalities are limited by being displayed on a two-dimensional (2D) surface. In contrast, a 3D-printed model provides tactile feedback that facilitates superior understanding. Hence, we have 3D-printed patient-specific deep inferior epigastric artery perforator (DIEP) templates, in an affordable and convenient manner, for preoperative planning. Methods: Twenty consecutive patients undergoing 25 immediate or delayed post-mastectomy autologous breast reconstruction with DIEP or muscle-sparing transverse rectus abdominis (MS-TRAM) flaps are recruited prospectively. Using free, open-source softwares (3D Slicer, Autodesk MeshMixer, and Cura) and desktop 3D printers (Ultimaker 3E and Moment), we created a template based on a patient's abdominal wall anatomy from CTA, with holes and lines indicating the position of perforators, their intramuscular course and the DIEA pedicle.Results: The mean age of patients was 52 . There were 15 immediate and 10 delayed reconstructions.3D printing time took mean 18 hours and 123.7 g of plastic filament, which calculates to a mean material cost of AUD 8.25. DIEP templates accurately identified the perforators and reduced intraoperative perforator identification by 7.29 minutes (P=0.02). However, the intramuscular dissection time was not affected (P=0.34).Surgeons found the template useful for preoperative marking (8.6/10) and planning (7.9/10), but not for intramuscular dissection (5.9/10). There were no immediate flap-related complications.Conclusions: Our 3D-printed, patient-specific DIEP template is accurate, significantly reduces intraoperative perforator identification time and, hence, may be a useful tool for preoperative planning in autologous breast reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.