Cerebral aneurysm (CA) is a common brain disease, and the development of cerebral aneurysm is driven by inflammation and hemodynamic stress. MicroRNA (miR)-124-5p is reported to be associated with inflammatory response in brain disease such as cerebral ischemia-reperfusion injury. However, the function and molecular mechanism of miR-124-5p in CA are not clear, thus, the effects of miR-124-5p on inflammatory response in CA were explored. Firstly, the expression of miR-124-5p in the peripheral blood of patients with CA and the control group was detected by reverse transcription-quantitative PCR. Then, the human umbilical vein endothelial cells (HUVECs) were used as an in vitro model system and stimulated with interleukin (IL)-1β to simulate the inflammatory environment of CA, and the expression of miR-124-5p was detected. Next, the effect of miR-124-5p on the migration and invasion of HUVECs was detected using Transwell assays. Meanwhile, the function of miR-124-5p on various inflammatory factors was determined by western blotting and enzyme-linked immunosorbent assay (ELISA). Next, the TargetScan website was used to predict FoxO1 as a target gene of miR-124-5p, and this target association was validated by double luciferase reporter assay and western blotting. Finally, the interaction of miR-124-5p with FoxO1 in CA was measured by Transwell western blotting and ELISA assays. The results showed that the expression level of miR-124-5p in the peripheral blood of patients with CA was lower compared with that of control group, and the miR-124-5p in HUVECs stimulated by IL-1β was less compared with that in normal HUVECs. Besides, miR-124-5p could inhibit the migration and invasion abilities of HUVECs and the release of inflammatory factors. Additionally, the overexpression of miR-124-5p was able to inhibit the expression of FoxO1. miR-124-5p-inhibitor promoted the migration and invasion of HUVECs, as well as inflammatory response, which was weakened following the introduction of FoxO1 small interfering RNA. Overall, the present study demonstrated that miR-124-5p could prevent the occurrence and development of cerebral aneurysm by downregulating the expression of FoxO1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.