Bone morphogenetic protein-2 (BMP-2) is a novel differentiation factor that is capable of inducing osteoblast differentiation and bone formation, making it an attractive option in treatment of bone defects, fractures, and spine fusions. Inflammation, which was a common situation during bone healing, is recognized to inhibit osteogenic differentiation and bone formation. However, the effect of inflammation on BMP-2-induced osteoblastic differentiation remains ambiguous. In this study, we showed that an inflammatory environment triggered by lipopolysaccharide (LPS) in vitro would suppress BMP-2-induced osteogenic differentiation of bone marrow mesenchymal stem cells, which represented by decreased alkaline phosphatase (ALPase) activity and down-regulated osteogenic genes. In addition, LPS activated nuclear factor-κB (NF-κB) via a TLR4/MyD88-dependent manner and inhibited BMP-2-induced phosphorylation and nuclear translocation of Smad1/5/8. The blocking of NF-κB signaling by pretreatment with specific inhibitors such as BAY-11-7082, TPCK and PDTC, or by transfection with plasmids encoding p65 siRNA or IκBα siRNA could significantly reverse the inhibitory effect of LPS on BMP-2-induced BMP/Smad signaling and osteogenic differentiation. By contrast, even without stimulation of LPS, overexpression of p65 gene showed obvious inhibitory effects on BMP-2-induced BMP/Smad signaling and ALPase activity. These data indicate that the LPS-mediated inflammatory environment inhibits BMP-2-induced osteogenic differentiation, and that the crosstalk between TLR4/MyD88/NF-κB and BMP/Smad signaling negatively modulates the osteoinductive capacity of BMP-2.
Large bone defect treatment represents a great challenge due to the difficulty of functional and esthetic reconstruction. Tissue-engineered bone grafts created by in vitro manipulation of bioscaffolds, seed cells, and growth factors have been considered potential treatments for bone defect reconstruction. However, a significant gap remains between experimental successes and clinical translation. An emerging strategy for bridging this gap is using the in vivo bioreactor principle and flap prefabrication techniques. This principle focuses on using the body as a bioreactor to cultivate the traditional triad (bioscaffolds, seed cells, and growth factors) and leveraging the body's self-regenerative capacity to regenerate new tissue. Additionally, flap prefabrication techniques allow the regenerated bone grafts to be transferred as prefabricated bone flaps for bone defect reconstruction. Such a strategy has been used successfully for reconstructing critical-sized bone defects in animal models and humans. Here, we highlight this concept and provide some perspective on how to translate current knowledge into clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.