Background Depression is the most common form of mental disorder in community and health care settings and current treatments are far from satisfactory. Vagus nerve stimulation (VNS) is an FDA-approved somatic treatment for treatment-resistant depression. However, the involvement of surgery has limited VNS only to patients who have failed to respond to multiple treatment options. Transcutaneous VNS (tVNS) is a relatively new, non-invasive VNS method based on the rationale that there is afferent / efferent vagus nerve distribution on the surface of the ear. The safe and low-cost characteristics of tVNS have the potential to significantly expand the clinical application of VNS. Methods In this study, we investigated how tVNS can modulate the default mode network (DMN) functional connectivity (FC) in mild or moderate major depressive disorder (MDD) patients. Forty-nine MDD patients were recruited, and received tVNS or sham tVNS (stVNS) treatments. Result 34 patients completed the study and were included in data analysis. After one month of tVNS treatment, the 24-item Hamilton Depression Rating Scale (HAMD) score reduced significantly in the tVNS group as compared to the stVNS group. The FC between the DMN and anterior insula and parahippocampus decreased; the FC between the DMN and precuneus and orbital prefrontal cortex increased compared to stVNS. All these FC increases are also associated with HAMD reduction. Conclusions tVNS can significantly modulate the DMN FC of MDD patients; our results provide insights to elucidate the brain mechanism of tVNS treatment for MDD patients.
Background Depression presents a significant burden to both patients and society. One treatment that has emerged is vagus nerve stimulation (VNS), an FDA-approved physical treatment for depressive disorders. However, the application of this intervention has been limited by the involvement of surgery and potential side effects. The aim of this study is to explore the effectiveness of stimulating the superficial branches of the vagus nerve as a solo treatment for MDD. Methods This is a nonrandomized, controlled study. The first cohort of patients (n = 91) only received transcutaneous auricular VNS (taVNS) for 12 weeks. In the second cohort (n = 69), patients first received 4 weeks of sham taVNS followed by 8 weeks of taVNS. All treatments were self-administered by the patients at home after they received training from the hospitals. The primary outcome measurement was the 24-item Hamilton Depression Rating Scale measured at weeks 0, 4, 8, and 12. Data analysis included a timelag analysis comparing 1) real and sham taVNS groups at week 4; 2) the real taVNS group at week 4 vs the sham taVNS group at week 8 (fourth week of real taVNS following 4 weeks of sham); and 3) the real taVNS group at week 8 vs the sham taVNS group at week 12 (eighth week of real taVNS following sham). Results After four weeks of treatment, MDD patients in the taVNS group showed greater improvement than that of the sham taVNS group as indicated by both Hamilton score changes as well as response and remission rates at week four. In addition, we also found that the clinical improvements continued until week 12 during taVNS. Limitations Patients were not randomized in this study. Conclusions Our results suggest that taVNS is a promising, safe, and cost-effective therapeutic method for mild and moderate MDD.
BackgroundDepressive disorders are the most common form of mental disorders in community and health care settings. Unfortunately, the treatment of Major Depressive Disorder (MDD) is far from satisfactory. Vagus nerve stimulation (VNS) is a relatively new and promising physical treatment for depressive disorders. One particularly appealing element of VNS is the long-term benefit in mood regulation. However, because this intervention involves surgery, perioperative risks, and potentially significant side effects, this treatment has been limited to those patients with treatment-resistant depression who have failed medication trials and exhausted established somatic treatments for major depression, due to intolerance or lack of response.This double-blinded randomized clinical trial aims to overcome these limitations by introducing a novel method of stimulating superficial branches of the vagus nerve on the ear to treat MDD. The rationale is that direct stimulation of the afferent nerve fibers on the ear area with afferent vagus nerve distribution should produce a similar effect as classic VNS in reducing depressive symptoms without the burden of surgical intervention.DesignOne hundred twenty cases (60 males) of volunteer patients with mild and moderate depression will be randomly divided into transcutaneous vagus nerve stimulation group (tVNS) and sham tVNS group. The treatment period lasts 4 months and all clinical and physiological measurements are acquired at the beginning and the end of the treatment period.DiscussionThis study has the potential to significantly extend the application of VNS treatment for MDD and other disorders (including epilepsy, bipolar disorder, and morbid obesity), resulting in direct benefit to the patients suffering from these highly prevalent disorders. In addition, the results of this double-blinded clinical trial will shed new light on our understanding of acupuncture point specificity, and development of methodologies in clinical trials of acupuncture treatment.Trials registrationClinical Trials. ChiCTR-TRC-11001201 http://www.chictr.org/cn/
To explore new noninvasive treatment options for depression, this study investigated the effects of electroacupuncture (EA) at the auricular concha region (ACR) of depression rat models. Depression in rats was induced by unpredictable chronic mild stress (UCMS) combined with isolation for 21 days. Eighty male Wistar rats were randomly assigned into four groups: normal, UCMS alone, UCMS with EA-ACR treatment, and UCMS with EA-ear-tip treatment. Rats under inhaled anesthesia were treated once daily for 14 days. The results showed that blood pressure and heart rate were significantly reduced in the EA-ACR group than in the UCMS alone group or the EA-ear-tip group. The open-field test scores significantly decreased in the UCMS alone and EA-ear-tip groups but not in the EA-ACR group. Both EA treatments downregulated levels of plasma cortisol and ACTH in UCMS rats back to normal levels. The present study suggested that EA-ACR can elicit similar cardioinhibitory effects as vagus nerve stimulation (VNS), and EA-ACR significantly antagonized UCMS-induced depressive status in UCMS rats. The antidepressant effect of EA-ACR is possibly mediated via the normalization of the hypothalamic-pituitary-adrenal (HPA) axis hyperactivity.
Chinese ancient medical scientists have long focused on the internal and external contacts between acupoints on the surface of the body and the viscera. The Miraculous Pivot (it is one of the earliest medical classics in China) stated, "Twelve regular channels belong to the zang-fu organs internally, and connect to the extremities and joints externally." Traditional Chinese medicine considers acupoints as defined areas where the Qi of viscera and meridians are transfused. These include the reaction points of visceral diseases on the body surface as well as the acupuncture trigger points that promote the flow of Qi and blood, and regulate visceral function. Chinese ancient medical scientists classified the specificity of the main acupoints in the body based on the meridian doctrine, which has been instructing clinical application for about 2000 years. Laws on the domino effect of acupoints have mainly focused on conclusions to clinical experiences. Indications of some acupoints exceed the practical paradigm since the excessive extension occurred during theory derivation. The current research direction on acupuncture focuses on three aspects: the effectiveness of acupuncture and moxibustion; the relevances and associations between meridians and viscera; and the physical and chemical properties and relevant physical basis of acupoints. The relevance between meridians and viscera is the central theory in the meridian doctrine, and acupoints are regarded as an important link in the relationship between meridians and viscera. Specific relationships between acupoints and target organs exist. Stimulating different acupoints on the body surface can help deal with different diseases, especially visceral diseases. In addition, acupoints have a dual function of reflecting and treating visceral diseases. There is no systemic research available on acupoint specificity, despite current knowledge and clinical experiences, which results in a weak foundation for acupuncture theory. This study focuses on the relevance and associations between meridians and viscera. A summary of the mechanisms of acupuncture regulating visceral sensation and mobility and the specific relationships between acupoints and their target organs are presented in this review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.