ANXA1, which can bind phospholipid in a calcium dependent manner, is reported to play a pivotal role in tumor progression. However, the role and mechanism of ANXA1 involved in the occurrence and development of malignant glioma are still not well studied. Therefore, we explored the effects of ANXA1 on normal astrocytes and glioma cell proliferation, apoptosis, migration and invasion and the underlying mechanisms. We found that ANXA1 was markedly up-regulated in glioma cell lines and glioma tissues. Down-regulation of ANXA1 inhibited normal astrocytes and glioma cell proliferation and induced the cell apoptosis, which suggested that the consequences of loss of Annexin 1 are not specific to the tumor cells. Furthermore, the siRNA-ANXA1 treatment significantly reduced tumor growth rate and tumor weight. Moreover, decreasing ANXA1 expression caused G2/M phase arrest by repressing expression levels of cdc25C, cdc2 and cyclin B1. Interestingly, ANXA1 did not affect the expressions of β-catenin, GSK-3β and NF-κB, the key signaling molecules associated with cancer progression. However, siRNA-ANXA1 was found to negatively regulate phosphorylation of AKT and the expression and activity of MMP2/-9. Finally, the decrease of cell proliferation and invasiveness induced by ANXA1 down-regulation was partially reversed by combined treatment with AKT agonist insulin-like growth factor-1 (IGF-1). Meanwhile, the inhibition of glioma cell proliferation and invasiveness induced by ANXA1 down-regulation was further enhanced by combined treatment with AKT inhibitor LY294002. In summary, these findings demonstrate that ANXA1 regulates proliferation, migration and invasion of glioma cells via PI3K/AKT signaling pathway.
Objective The present study aimed to investigate the role of periapical diseases in inducing medication-related osteonecrosis of the jaws (MRONJ) using an ovariectomized (OVX) mice model. Materials and Methods Twenty C57BL/6N female mice were randomly assigned to two groups. All mice were subjected to bilateral ovariectomy and then treated with oncologic dose of zoledronic acid (ZA) or vehicle for twelve weeks. Eight weeks after commence of drug administration, a pulpal exposure (PE) operation was performed on the first right lower molar to induce periapical periodontitis; the contralateral non-PE tooth was used as control. All animals were sacrificed four weeks after pulpal exposure, and the mandibles were harvested for radiological and histomorphometrical analysis. Results Micro computed tomography (μ-CT) examination demonstrated that periapical diseases significantly increased alveolar bone resorption, and the resorption was greatly attenuated by ZA treatment. Concurrent ZA therapy significantly increased bone density and histological osteocyte necrosis in the presence of periapical lesions. Conclusion ZA treatment reduced bone absorption resulting from periapical disease but increased the risk of developing MRONJ in the ovariectomized mouse model.
Bisphosphonates (BPs) have been extensively used for management of bone diseases with pathologically high resorption. Despite the great clinical benefits, a severe complication known as medication-related osteonecrosis of the jaw (MRONJ) has been reported. It is found that most of the reported MRONJ cases were limited in the jawbones/craniofacial bones instead of long bones. The present study aims to investigate the differential bone response to surgical procedures between jawbones and long bones exposed to BPs. Forty-eight skeletal mature Sprague Dawley female rats were administered oncologic dose of zoledronic acid (ZA) or normal saline for 4 weeks and then subjected to tooth extraction on the mandible and maxilla, and a bone defect creation on the femur. After surgical procedures, ZA or saline treatment were continued until sacrifice at week 2, week 4, and week 8, post-operatively. The samples were subjected to micro-computerized tomography (micro-CT) and histological assessment. Osteonecrosis was only found in jawbones in ZA-treated rats. ZA-treated rats showed significantly higher bone mineral density with greater bone volume in all surgical sites than that in the controls. The length of exposure of ZA did not seem to affect trabecular microstructure, and it only showed higher bone volume and BMD with longer healing time which is expected in the healing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.