Human tumor xenograft models do not replicate the human immune system and tumor microenvironment. We developed an improved humanized mouse model, derived from fresh cord blood CD34 þ stem cells (CD34 þ HSC), and combined it with lung cancer cell line-derived human xenografts or patient-derived xenografts (Hu-PDX). Fresh CD34 þ HSCs could reconstitute detectable mature human leukocytes (hCD45 þ ) in mice at four weeks without the onset of graftversus-host disease (GVHD). Repopulated human T cells, B cells, natural killer (NK) cells, dendritic cells (DC), and myeloid-derived suppressor cells (MDSC) increased in peripheral blood, spleen, and bone marrow over time. Although cultured CD34 þ HSCs labeled with luciferase could be detected in mice, the cultured HSCs did not develop into mature human immune cells by four weeks, unlike fresh CD34 þ HSCs. Ex vivo, reconstituted T cells, obtained from the tumor-bearing humanized mice, secreted IFNg upon treatment with phorbol myristate acetate (PMA) or exposure to human A549 lung tumor cells and mediated antigen-specific CTL responses, indicating functional activity. Growth of engrafted PDXs and tumor xenografts was not dependent on the human leukocyte antigen status of the donor. Treatment with the anti-PD-1 checkpoint inhibitors pembrolizumab or nivolumab inhibited tumor growth in humanized mice significantly, and correlated with an increased number of CTLs and decreased MDSCs, regardless of the donor HLA type. In conclusion, fresh CD34 þ HSCs are more effective than their expanded counterparts in humanizing mice, and do so in a shorter time. The Hu-PDX model provides an improved platform for evaluation of immunotherapy.
Gene therapy provides a novel treatment approach to cancer patients. Ideally, expression of therapeutic genes driven by cancer-specific promoters would only target tumors resulting in minimal toxicity to normal tissues. While there is a need of more effective and tolerable treatments for ovarian cancer patients, we aimed to identify gene promoters with high activity in ovarian tumors that can be potentially used in gene therapy to drive the expression of a therapeutic gene in tumors. To identify such promoters, a literature search was performed to reveal genes that are preferentially expressed in ovarian cancer compared with normal ovarian tissue. We found that the ceruloplasmin promoter drove up to 30-fold higher luciferase expression in ovarian cancer cells compared with immortalized normal cells. Furthermore, deletion studies revealed an activator protein-1 (AP-1) site in the ceruloplasmin promoter to be critical for optimal ceruloplasmin promoter activity. Ceruloplasmin promoter activity was significantly activated by 1-O-tetradecanoyl phorbol-13-acetate, a c-jun activator, and conversely suppressed by SP600125, a c-jun inhibitor. Consistently, the ceruloplasmin AP-1 site was specifically recognized by c-jun both in vitro and in vivo. Immunohistochemical analyses of human ovarian cancer specimens showed a direct correlation (r ؍ 0.7, P ؍ 0.007) between expression levels of c-jun and ceruloplasmin. In nude mice carrying SKOV3.ip1 xenografts, the ceruloplasmin promoter demonstrated significantly higher activities in tumors compared with normal organs. Together, these results suggest that the ceruloplasmin promoter activity is significantly enhanced in ovarian cancer and therefore may be exploited as a promising cancer-specific promoter in developing new gene therapy strategies for ovarian cancer.
The role of RNA-dependent protein kinase R (PKR) and its association with misfolded protein expression in cancer cells are unclear. Herein we report that PKR regulates misfolded protein clearance by preventing it release through exosomes and promoting lysosomal degradation of misfolded prion proteins in cancer cells. We demonstrated that PKR contributes to the lysosome function and regulates misfolded prion protein clearance. We hypothesized that PKR-associated lysosome function is critical for cancer but not normal cell survival, representing an effective approach for highly targeted cancer therapy. In screening a compound library, we identified two PKR-associated compounds 1 and 2 (Pac 1 and 2) did not affect normal cells but selectively induced cell death in cancer cells depending on their PKR expression status. Pac 1 significantly inhibited the growth of human lung and breast xenograft tumors in mice with no toxicity. Pac 1 binds to PI4K2A and disrupts the PKR/PI4K2A-associated lysosome complex, contributing to destabilization of cancer cell lysosomes and triggering cell death. We observed that PKR and PI4K2A play significant prognostic roles in breast cancer patients. These results demonstrate that targeting of a PI4K2A/PKR lysosome complex may be an effective approach for cancer therapy.
We have demonstrated that RNA-dependent protein kinase (PKR) and its downstream protein p-eIF2α are independent prognostic markers for overall survival in lung cancer. In the current study, we further investigate the interaction between PKR and AMPK in lung tumor tissue and cancer cell lines. We examined PKR protein expression in 55 frozen primary lung tumor tissues by Western blotting and analyzed the association between PKR expression and expresson of 139 proteins on tissue samples examined previously by Reverse Phase Protein Array (RPPA) from the same 55 patients. We observed that biomarkers were either positively (phosphorylated AMP-activated kinaseT172 [p-AMPK]) or negatively (insulin receptor substrate 1, meiotic recombination 11, ATR interacting protein, telomerase, checkpoint kinase 1, and cyclin E1) correlated with PKR. We further confirmed that induction of PKR with expression vectors in lung cancer cells causes activation of the AMPK protein independent of the LKB1, TAK1, and CaMKKβ pathway. We found that PKR causes nutrient depletion, which increases AMP levels and decreases ATP levels, causing AMPK phosphorylation. We further demonstrated that inhibiting AMPK expression with compound C or siRNA enhanced PKR-mediated cell death. We next explored the combination of PKR and p-AMPK expression in NSCLC patients and observed that expression of p-AMPK predicted a poor outcome for adenocarcinoma patients with high PKR expression and a better prognosis for those with low PKR expression. These findings were consistent with our in vitro results. AMPK might rescue cells facing metabolic stresses, such as ATP depletion caused by PKR. Our data indicate that PKR causes nutrient depletion, which induces the phosphorylation of AMPK. AMPK might act as a protective response to metabolic stresses, such as nutrient deprivation.
In view of the fact that the actual back pressure is difficult to track the set value quickly and stably, this paper applies the predictive control algorithm (GPC) which can respond quickly, has good robustness and is easy to realize in the industrial production site to optimize the back pressure control. The control performance of the back pressure control system with PID, fuzzy PID and GPC is compared and analyzed through the simulation test. The simulation results show that the GPC algorithm has better dynamic performance than PID and fuzzy PID control in the case of set point disturbance and internal disturbance, and has stronger robustness in the face of model mismatch. To sum up, GPC algorithm is more suitable for the back pressure control system under complex working conditions, and the optimization control method has a certain guiding significance for the actual production site back pressure control strategy improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.