This paper proposes an unsupervised algorithm for learning a finite mixture of scaled Dirichlet distributions. Parameters estimation is based on the maximum likelihood approach, and the minimum message length (MML) criterion is proposed for selecting the optimal number of components. This research work is motivated by the flexibility issues of the Dirichlet distribution, the widely used model for multivariate proportional data, which has prompted a number of scholars to search for generalizations of the Dirichlet. By introducing the extra parameters of the scaled Dirichlet, several useful statistical models could be obtained. Experimental results are presented using both synthetic and real datasets. Moreover, challenging real‐world applications are empirically investigated to evaluate the efficiency of our proposed statistical framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.