We have investigated the temperature dependence of the barrier height of high-quality Pd Schottky contacts on (0001)-oriented ZnO thin films by temperature-dependent current-voltage and capacitance-voltage (CV) measurements. The films have been grown by pulsed-laser deposition. The effective Schottky barrier height ΦB,eff deduced from the current-voltage measurements was evaluated by considering a Gaussian barrier height distribution with a standard deviation σ around a mean barrier height ΦB,m. We determined ΦB,m=(1.16±0.04)eV which agrees well with the value of 1.14eV determined by CV measurements. The standard deviation is determined to be (134±10)meV.
A model for carbon nanotube (CNT)/polymer composite conductivity is developed, considering the effect of inter-tube tunnelling through the polymer. The statistical effects of inter-tube distance and alignment on the tunnelling are investigated through numerical modelling, to highlight their role in the conductance and piezoresistance of the composite film. The impact of critical parameters, including the concentration, alignment and aspect ratio of the CNTs and the tunnelling barrier height of the polymer is statistically evaluated using a large number of randomly generated CNT/polymer composite films. A numerical model is presented for the tunnelling resistance as a function of CNT concentration and polymer properties, which provides good agreement with the reported conductance in the literature. In particular, for a low concentration of CNTs close to the percolation threshold, we demonstrate how tunnelling dominates the conductance properties and leads to significant increase in the piezoresistance of the composite. This is important for gaining insight into the optimum concentration and alignment of the CNTs in the composite film for applications such as strain sensors, anisotropic conductive films, transparent electrodes and flexible electronics.
Residual ridge resorption is the reduction in size of the bony ridge under the mucoperiosteum. Prosthetic rehabilitation of severely atrophic ridges has always been difficult for the clinician due to decreased retention, stability and support. Because of such severe resorption the restorative space between maxillary and mandibular residual ridges is increased. Rehabilitation in such cases may result in increased height and weight of the prosthesis further compromising its retention and stability. This in turn overloads the underlying hard and soft tissues that cause further ridge resorption so, in order to keep down this undesirable sequence, the weight of the prosthesis needs to be reduced which can be achieved by making hollow prosthesis. This article describes a simple technique of fabricating a hollow maxillary complete denture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.