Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data.
Mortality from collision with vehicles is the most visible impact of road traffic on wildlife. Mortality due to roads (hereafter road-kill) can affect the dynamic of populations of many species and can, therefore, increase the risk of local decline or extinction. This is especially true in Brazil, where plans for road network upgrading and expansion overlaps biodiversity hotspot areas, which are of high importance for global conservation. Researchers, conservationists and road planners face the challenge to define a national strategy for road mitigation and wildlife conservation. The main goal of this dataset is a compilation of geo-referenced road-kill data from published and unpublished road surveys. This is the first Data Paper in the BRAZIL series (see ATLANTIC, NEOTROPICAL, and BRAZIL collections of Data Papers published in Ecology), which aims make public road-kill data for species in the Brazilian Regions. The dataset encompasses road-kill records from 45 personal communications and 26 studies published in peer-reviewed journals, theses and reports. The road-kill dataset comprises 21,512 records, 83% of which are identified to the species level (n = 450 species). The dataset includes records of 31 amphibian species, 90 reptile species, 229 bird species, and 99 mammal species. One species is classified as Endangered, eight as Vulnerable and twelve as Near Threatened. The species with the highest number of records are: Didelphis albiventris (n = 1,549), Volatinia jacarina (n = 1,238), Cerdocyon thous (n = 1,135), Helicops infrataeniatus (n = 802), and Rhinella icterica (n = 692). Most of the records came from southern Brazil. However, observations of the road-kill incidence for non-Least Concern species are more spread across the country. This dataset can be used to identify which taxa seems to be vulnerable to traffic, analyze temporal and spatial patterns of road-kill at local, regional and national scales and also used to understand the effects of road-kill on population persistence. It may also contribute to studies that aims to understand the influence of landscape and environmental influences on road-kills, improve our knowledge on road-related strategies on biodiversity conservation and be used as complementary information on large-scale and macroecological studies. No copyright or proprietary restrictions are associated with the use of this data set other than citation of this Data Paper.
Biological invasion is one of the main threats to native biodiversity. For a species to become invasive, it must be voluntarily or involuntarily introduced by humans into a nonnative habitat. Mammals were among first taxa to be introduced worldwide for game, meat, and labor, yet the number of species introduced in the Neotropics remains unknown. In this data set, we make available occurrence and abundance data on mammal species that (1) transposed a geographical barrier and (2) were voluntarily or involuntarily introduced by humans into the Neotropics. Our data set is composed of 73,738 historical and current georeferenced records on alien mammal species of which around 96% correspond to occurrence data on 77 species belonging to eight orders and 26 families. Data cover 26 continental countries in the Neotropics, ranging from Mexico and its frontier regions (southern Florida and coastal‐central Florida in the southeast United States) to Argentina, Paraguay, Chile, and Uruguay, and the 13 countries of Caribbean islands. Our data set also includes neotropical species (e.g., Callithrix sp., Myocastor coypus, Nasua nasua) considered alien in particular areas of Neotropics. The most numerous species in terms of records are from Bos sp. (n = 37,782), Sus scrofa (n = 6,730), and Canis familiaris (n = 10,084); 17 species were represented by only one record (e.g., Syncerus caffer, Cervus timorensis, Cervus unicolor, Canis latrans). Primates have the highest number of species in the data set (n = 20 species), partly because of uncertainties regarding taxonomic identification of the genera Callithrix, which includes the species Callithrix aurita, Callithrix flaviceps, Callithrix geoffroyi, Callithrix jacchus, Callithrix kuhlii, Callithrix penicillata, and their hybrids. This unique data set will be a valuable source of information on invasion risk assessments, biodiversity redistribution and conservation‐related research. There are no copyright restrictions. Please cite this data paper when using the data in publications. We also request that researchers and teachers inform us on how they are using the data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.