Werner syndrome (WS) is an inherited disorder characterized by premature onset of aging, genomic instability, and increased cancer incidence. The disease is caused by loss of function mutations of the WRN gene, a RecQ family member with both helicase and exonuclease activities. However, despite its putative tumorsuppressor function, little is known about the contribution of WRN to human sporadic malignancies. Here, we report that WRN function is abrogated in human cancer cells by transcriptional silencing associated with CpG island-promoter hypermethylation. We also show that, at the biochemical and cellular levels, the epigenetic inactivation of WRN leads to the loss of WRN-associated exonuclease activity and increased chromosomal instability and apoptosis induced by topoisomerase inhibitors. The described phenotype is reversed by the use of a DNA-demethylating agent or by the reintroduction of WRN into cancer cells displaying methylationdependent silencing of WRN. Furthermore, the restoration of WRN expression induces tumor-suppressor-like features, such as reduced colony formation density and inhibition of tumor growth in nude mouse xenograft models. Screening a large collection of human primary tumors (n ؍ 630) from different cell types revealed that WRN CpG island hypermethylation was a common event in epithelial and mesenchymal tumorigenesis. Most importantly, WRN hypermethylation in colorectal tumors was a predictor of good clinical response to the camptothecin analogue irinotecan, a topoisomerase inhibitor commonly used in the clinical setting for the treatment of this tumor type. These findings highlight the importance of WRN epigenetic inactivation in human cancer, leading to enhanced chromosomal instability and hypersensitivity to chemotherapeutic drugs. DNA methylationW erner syndrome (WS) is an autosomal recessive disease characterized by premature aging and a high incidence of malignant neoplasms (1, 2). Mutations in the WS gene (WRN) are found in patients exhibiting the clinical symptoms of WS (3-5). The vast majority of WRN mutations result in loss of function of the WRN protein (6). The WRN protein has been demonstrated to possess helicase and exonuclease activities (7-9), and cultures of WS cells show increased chromosomal instability, with abundant deletions, reciprocal translocations, and inversions (10, 11).WRN belong to the RecQ family of helicases, which are highly conserved from bacteria to human, and whose members are thought to be essential caretakers of the genome (11,12). In addition to WRN, germline mutations of two other RecQ helicases, BLM in Bloom syndrome and RECQL4 in Rothmund-Thomson syndrome, are also associated with an elevated incidence of cancer (12). Because patients with WRN germline mutations develop a broad spectrum of epithelial and mesenchymal tumors, which is one of the main causes of their death before the age of 50, a tumorsuppressor function for WRN has been proposed. This putative role is also supported by a very high rate of loss of heterozygosity at the chrom...
SUMMARY The noncoding Xist RNA triggers silencing of one of the two female X chromosomes during X inactivation in mammals. Gene silencing by Xist is restricted to a special developmental context in early embryos and specific hematopoietic precursors. Here, we show that Xist can initiate silencing in a lymphoma model. We identify the special AT-rich binding protein SATB1 as an essential silencing factor. Loss of SATB1 in tumor cells abrogates the silencing function of Xist. In lymphocytes Xist localizes along SATB1-organized chromatin and SATB1 and Xist influence each other’s pattern of localization. SATB1 and its homolog SATB2 are expressed during the initiation window for X inactivation in ES cells. Importantly, viral expression of SATB1 or SATB2 enables gene silencing by Xist in embryonic fibroblasts, which normally do not provide an initiation context. Thus, our data establish SATB1 as a crucial silencing factor contributing to the initiation of X inactivation.
The risk of having cancer increases with age probably because progenitor cells from mature organisms accumulate enough molecular lesions to evade the homeostatic control of their tissular contexts. Molecular lesions can be genetic (mutations, deletions, or translocations) and/or epigenetic. Epigenetic signaling, including DNA methylation and histone modification, is essential for normal development and becomes altered during Aging and by cancer. Several epigenetic alterations, such as global hypomethylation and CpG island hypermethylation, are progressively accumulated during Aging and directly contribute to cell transformation. Intriguingly, others, such as those involved in the control of telomere length and several epigenetic enzymes belonging to the family of nicotinamide adenine dinucleotide (NAD)(+) dependent deacetylases known as sirtuins, exhibit a well-defined progression during Aging that is dramatically reverted in transformed cells. We discuss the biological significance of both groups of epigenetic modifications in terms of their relative contribution to ontogenic development, senescence, and cell proliferation.
Epigenetic silencing of the lamin A/C gene by CpG island promoter hypermethylation is responsible for the loss of expression of A-type lamins in leukemias and lymphomas. The finding that lamin A/C hypermethylation is associated with poor outcome in diffuse large B-cell lymphomas suggests important clinical implications.
Rett syndrome (RTT), the second most common cause of mental retardation in females, has been associated with mutations in MeCP2, the archetypical member of the methyl-CpG binding domain (MBD) family of proteins. MeCP2 additionally possesses a transcriptional repression domain (TRD). We have compared the gene expression profiles of RTT-and normal female-derived lymphoblastoid cells by using cDNA microarrays. Clustering analysis allowed the classification of RTT patients according to the localization of the MeCP2 mutation (MBD or TRD) and those with clinically diagnosed RTT but without detectable MeCP2 mutations. Numerous genes were observed to be overexpressed in RTT patients compared with control samples, including excellent candidate genes for neurodevelopmental disease. Chromatin immunoprecipitation analysis confirmed that binding of MeCP2 to corresponding promoter CpG islands was lost in RTT-derived cells harboring a mutation in the region of the MECP2 gene encoding the MBD. Bisulfite genomic sequencing demonstrated that the majority of MeCP2 binding occurred in DNA sequences with methylation-associated silencing. Most importantly, the finding that these genes are also methylated and bound by MeCP2 in neuron-related cells suggests a role in this neurodevelopmental disease. Our results provide new data of the underlying mechanisms of RTT and unveil novel targets of MeCP2-mediated gene repression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.