In the current work, physicochemical properties of arrowroot starch and thermal properties of glycerol/arrowroot starch membranes were investigated. Arrowroot starch exhibited high purity (starch content >99%) with amylose content >40% and granule size dispersion between 29 and 126 μm. Arrowroot starch has a gelatinization temperature of 63.94°C and a B-type crystalline structure. Arrowroot starch, in combination with three levels of glycerol, was used to manufacture membranes by casting method. Increasing the plasticizer effect due to glycerol content increased the water weight loss of the membranes at temperatures higher than 110°C. Additionally, the onset temperature of the endothermic peak observed by differential scanning calorimetry and associated to water removal from the membranes changed with glycerol content. Physicochemical and thermal properties of arrowroot starch and glycerol/arrowroot starch membranes were similar to those reported previously for other starch sources. From the data obtained in this study, it is clear that arrowroot starch could have promising industrial applications.
Some properties of canna (Canna indica L.) and bore (Alocasia macrorrhiza) starches were evaluated and compared using cassava starch (Manihot esculenta Crantz) as a reference. Proximate analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and viscosity measurements were performed. Canna and bore starches showed a similar degree of purity as that of the cassava starch. Canna starch exhibited higher thermal stability and viscosity of solution values than those of bore and cassava starches. XRD spectra showed that canna starch crystallizes as a B-type structure; however, bore and cassava starches crystallize as an A-type structure. Results proved that canna and bore starches are promising bio(materials), obtained from unconventional sources, to be used for industrial applications, as their physicochemical properties are similar to those of cassava starch, which it is known has potential applications in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.