PurposeTo evaluate the diagnostic ability of macular ganglion cell (mGCL) and macular retinal nerve fiber (mRNFL) layers, to detect early glaucomatous eyes, using the new segmentation software of Spectralis optical coherence tomography (OCT) device (Heidelberg Engineering).MethodsA total of 83 eyes from 83 subjects were included in this observational, prospective cross-sectional study: 43 healthy controls and 40 early primary open-angle glaucoma (POAG) patients. All participants were examined using the Horizontal and Vertical Posterior Pole protocols, and the peripapillary RNFL (pRNFL) protocol of Spectralis OCT device. The new automated retinal segmentation software was applied to horizontal and vertical macular B-scans to determine mGCL and mRNFL thicknesses in each one of the 9 sectors of the Early Treatment Diagnostic Retinopathy Study circle. Thickness of each layer was compared between groups, and the sectors with better area under the receiver operating characteristic curve (AUC) were identified.ResultsmGCL was significantly thinner in the POAG group, especially in outer and inner temporal sectors (p<0.001); and mRNFL was significantly thinner in the POAG group in the outer inferior and the outer superior sector (p<0.001). Diagnostic accuracy of inner macular layers was good, and in general mGCL was superior to mRNFL. pRNFL obtained the best diagnostic capability (AUC, 0.886). Horizontal and vertical Posterior Pole protocols performed similarly.ConclusionsInner macular layers using either horizontal or vertical B-scans, especially temporal sectors of mGCL, have good diagnostic capability to differentiate early glaucomatous eyes from control eyes; however, pRNFL has the highest diagnostic sensitivity for glaucoma detection.
Femtosecond laser–assisted arcuate keratotomy is a safe technique to reduce astigmatism after cataract surgery. However, it is still far from exceeding the results obtained with the toric intraocular lens implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.