Self-healing concrete has the potential to optimise traditional design approaches; however, commercial uptake requires the ability to harmonize against standardized frameworks. Within EU SARCOS COST Action, different interlaboratory tests were executed on different self-healing techniques. This paper reports on the evaluation of the effectiveness of proposed experimental methodologies suited for self-healing concrete with expansive mineral additions. Concrete prisms and discs with MgO-based healing agents were produced and precracked. Water absorption and water flow tests were executed over a healing period spanning 6 months to assess the sealing efficiency, and the crack width reduction with time was monitored. High variability was reported for both reference (REF) and healing-addition (ADD) series affecting the reproducibility of cracking. However, within each lab, the crack width creation was repeatable. ADD reported larger crack widths. The latter influenced the observed healing making direct comparisons across labs prone to errors. Water absorption tests highlighted were susceptible to application errors. Concurrently, the potential of water flow tests as a facile method for assessment of healing performance was shown across all labs. Overall, the importance of repeatability and reproducibility of testing methods is highlighted in providing a sound basis for incorporation of self-healing concepts in practical applications.
In recent decades, layered double hydroxides (LDH) have been proposed as innovative corrosion inhibitors for reinforced concrete. Their protective action is based on the ability to intercalate specific anions in the interlayer and on their ability to exchange the intercalated anion. In the present study, an organically charged LDH, with sebacate anions in the interlayer (LDH-S), is proposed as a water-repellent additive for mortar. The waterproofing efficiency of LDH-S and the associated corrosion inhibition ability has been evaluated in reinforced mortar samples. A 42% decrease in the water capillary absorption coefficient has been estimated when 3% LHD-S is added to a mortar. Both the passivation processes of the steel rebars during the curing period and the initiation of corrosion due to chloride exposure have been studied by electrochemical measurements. Three different mortars have been evaluated: reference mortar (REF), mortar with Mg-Al LDH (LDH), and mortar with LDH-sebacate (LDH-S). The latter has shown an important protective capacity for preventing the initiation of corrosion by chloride penetration, with an inhibitory efficiency of 74%. The presence of LDHs without sebacate in the interlayer also improved the performance of the mortar against rebar corrosion, but with lower efficiency (23% inhibitory efficiency). However, this protection is lost after continued chloride exposure over time, and corrosion initiates similarly to the reference mortar. The low corrosion current density values registered when LDH-S is added to the mortar may be related to the increased electrical resistance recorded in this mortar.
Crystalline admixtures are employed for waterproofing concrete. This type of admixtures can affect the early age performance of cement-based mixes. The electrical resistance properties of cement have been related to the initial setting time and to the hydration development. This paper proposes a system for remote monitoring of the initial setting time and the first days of the hardening of cement-based mortars to evaluate the effect of the incorporation of crystalline admixtures. The electrical resistance results have been confirmed by other characterization techniques such as thermogravimetric analysis and compressive strength measurements. From the electrical resistance monitoring it has been observed that the incorporation of crystalline admixtures causes a delay in the initial setting time and hydration processes. The measurements also allow to evaluate the influence of the amount of admixture used; thus, being very useful as a tool to define the optimum admixture dosage to be used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.