Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative condition. The complex pathology of this disease includes oxidative stress, metal deposition, formation of aggregates of amyloid and tau, enhanced immune responses, and disturbances in cholinesterase. Drugs targeted toward reduction of amyloidal load have been discovered, but there is no effective pharmacological treatment for combating the disease so far. Natural products have become an important avenue for drug discovery research. Polyphenols are natural products that have been shown to be effective in the modulation of the type of neurodegenerative changes seen in AD, suggesting a possible therapeutic role. The present review focuses on the chemistry of polyphenols and their role in modulating amyloid precursor protein (APP) processing. We also provide new hypotheses on how these therapeutic molecules may modulate APP processing, prevent Aβ aggregation, and favor disruption of preformed fibrils. Finally, the role of polyphenols in modulating Alzheimer's pathology is discussed.
α-Synuclein, an abundant and conserved presynaptic brain protein, is implicated as a critical factor in Parkinson's disease (PD). The aggregation of α-synuclein is believed to be a critical event in the disease process. α-Synuclein is characterized by a remarkable conformational plasticity, adopting different conformations depending on the environment. Therefore, it is classified as an "intrinsically disordered protein." Recently, a debate has challenged the view on the intrinsically disordered behavior of α-synuclein in the cell. It has been proposed that α-synuclein is a stable tetramer with a low propensity for aggregation; however, its destabilization leads to protein misfolding and its aggregation kinetics. In our critical analysis, we discussed about major issues: (i) why α-synuclein conformational behavior does not fit into the normal secondary structural characteristics of proteins, (ii) potential amino acids involved in the complexity of misfolding in α-synuclein that leads to aggregation, and (iii) the role of metals in misfolding and aggregation. To evaluate the above critical issues, we developed bioinformatics models related to secondary and tertiary conformations, Ramachandran plot, free energy change, intrinsic disordered prediction, solvent accessibility, and FoldIndex pattern. To the best of our knowledge, this is a novel critical assessment to understand the misfolding biology of synuclein and its relevance to Parkinson's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.