Abstract-Agonist-induced release of endothelial cell specific storage granules, designated Weibel-Palade bodies (WPBs), provides the endothelium with the ability to rapidly respond to changes in its micro-environment. Originally being defined as an intracellular storage pool for von Willebrand factor (VWF), it has recently been shown that an increasing number of other components, including P-selectin, interleukin (IL)-8, eotaxin-3, endothelin-1, and angiopoietin-2, is present within this subcellular organelle, implicating a role for WPB exocytosis in inflammation, hemostasis, regulation of vascular tone and angiogenesis. Recent studies emphasize that WPBs provide a dynamic storage compartment whose contents can be regulated depending on the presence of inflammatory mediators in the vascular micro-environment. Additionally, release of WPBs is tightly regulated and feedback mechanisms have been identified that prevent excessive release of bioactive components from this subcellular organelle. The ability to regulate both contents and exocytosis of WPBs endows these endothelial cell specific organelles with a remarkable plasticity. This is most likely needed to allow for controlled delivery of bioactive components into the circulation on vascular perturbation.
Weibel-Palade body (WPB) exocytosis underlies hormone-evoked VWF secretion from endothelial cells (ECs). We identify new endogenous components of the WPB: Rab3B, Rab3D, and the Rab27A/ Rab3 effector Slp4-a (granuphilin), and determine their role in WPB exocytosis. We show that Rab3B, Rab3D, and Rab27A contribute to Slp4-a localization to WPBs. siRNA knockdown of Slp4-a, MyRIP, Rab3B, Rab3D, Rab27A, or Rab3B/ Rab27A, or overexpression of EGFPSlp4-a or EGFP-MyRIP showed that Slp4-a is a positive and MyRIP a negative regulator of WPB exocytosis and that Rab27A alone mediates these effects. We found that ECs maintain a constant amount of cellular Rab27A irrespective of the WPB pool size and that Rab27A (and Rab3s) cycle between WPBs and a cytosolic pool. The dynamic redistribution of Rab proteins markedly decreased the Rab27A concentration on individual WPBs with increasing WPB number per cell. Despite this, the probability of WPB release was independent of WPB pool size showing that WPB exocytosis is not determined simply by the absolute amount of Rab27A and its effectors on WPBs. Instead, we propose that the probability of release is determined by the fractional occupancy of WPB-Rab27A by Slp4-a and MyRIP, with the balance favoring exocytosis. (Blood. 2012;120(13):2757-2767) IntroductionHormone-evoked VWF secretion from endothelial cells (ECs) is mediated by exocytosis of specialized secretory granules (SGs) called Weibel-Palade bodies (WPBs). 1 WPB exocytosis is triggered by increases in intracellular free Ca 2ϩ or cAMP concentrations, and involves a number of molecular components, including the Nethylmaleimide-sensitive factor, VAMP3, SNAP23, syntaxin 4, RalA, the annexin A2/S100A10 complex, and phospholipase D. [2][3][4][5][6][7] In addition, Rab proteins also regulate WPB exocytosis. A subset of Rab proteins, including Rab3A-3D, Rab27A/B, and Rab37, is associated with SGs in different cell types where they regulate SG biogenesis, trafficking, and exocytosis. 8 Secretory cells often express a mixture of these "secretory" Rabs, which may have overlapping or distinct functions. Human ECs are reported to express mRNA for Rab3A, Rab3D, and Rab37,3,9,10 Rab3B protein, 11 and Rab27A mRNA and protein. 12,13 To date, Rab27A is the only endogenous EC Rab protein that has been detected on WPBs. Through its effector MyRIP and Myosin Va, Rab27A is proposed to negatively regulate WPB exocytosis. 13,14 Rab27A can interact with different effector molecules, and many secretory cells express a mixture of these effectors. 8 In these cases, SG exocytosis probably depends on the balance of Rab27A interactions with the complement of Rab effectors in the cell.In addition to MyRIP, ECs contain mRNA for the Rab27A effector Slp4-a (granuphilin). 13 Slp4-a links SGs to the plasma membrane (PM) through SG-associated Rab proteins (principally Rab27A), PM-associated syntaxins (1a, 2, or 3) and soluble Munc18 isoforms. [15][16][17][18][19] Syntaxins exist in open and closed conformations that determine their participation in SNARE complex f...
Summary The blood vessel wall has a number of self‐healing properties, enabling it to minimize blood loss and prevent or overcome infections in the event of vascular trauma. Endothelial cells prepackage a cocktail of hemostatic, inflammatory and angiogenic mediators in their unique secretory organelles, the Weibel–Palade bodies (WPBs), which can be immediately released on demand. Secretion of their contents into the vascular lumen through a process called exocytosis enables the endothelium to actively participate in the arrest of bleeding and to slow down and direct leukocytes to areas of inflammation. Owing to their remarkable elongated morphology and their secretory contents, which span the entire size spectrum of small chemokines all the way up to ultralarge von Willebrand factor multimers, WPBs constitute an ideal model system for studying the molecular mechanisms of secretory organelle biogenesis, exocytosis, and content expulsion. Recent studies have now shown that, during exocytosis, WPBs can undergo several distinct modes of fusion, and can utilize fundamentally different mechanisms to expel their contents. In this article, we discuss recent advances in our understanding of the composition of the WPB exocytotic machinery and how, because of its configuration, it is able to support WPB release in its various forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.