The problem of estimating the indoor position of a person or an object, also known as indoor localization, has gained a lot of interest in the last decades. Actually, this feature would be valuable in many application contexts, from logistics to robotic and Assistive Technology. Different solutions have been proposed in the literature, exploiting a wide range of approaches. This paper aims to provide a brief review of the state-of-the-art approaches in the field, as well as to present the RESIMA case study. The latter exploits an ultrasound-based indoor localization system and a User–Environment Interaction functionality, which allows for performing the continuous estimation of the distance between the end-user and objects in the environment. The latter is valuable to provide the end-user with efficient assistance during the environment exploitation. The main focus of this work is related to the overall description of the system architecture, the trilateration algorithm adopted for the sake of user localization and the estimation of the delay time produced by user-distance computation under different operating conditions.
Magnetic field sensors are successfully used in numerous application contexts such as position sensing, speed detection, current detection, contactless switches, vehicle detection, and electronic compasses. In this paper, an inkjet printed magnetic sensor, based on the magneto-mechanical sensing principle, is presented together with a physical model describing its physical behavior and experimental results. The main novelties of the proposed solution consist of its low cost, rapid prototyping (printing and drying time), disposability, and in the use of a commercial low-cost printer. A measurement survey has been carried out by investigating magnetic fields belonging to the range 0–27 mT and for different values of the excitation current forced in the actuation coil. Experimental results demonstrate the suitability of both the proposed sensing strategy and model developed. In particular, in the case of an excitation current of 100 mA, the device responsivity and resolution are 3700 µε/T and 0.458 mT, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.