Three missense variants of ST3GAL3 are known to be responsible for a congenital disorder of glycosylation determining a neurodevelopmental disorder (intellectual disability/epileptic encephalopathy). Here we report a novel nonsense variant, p.Y220*, in two dichorionic infant twins presenting a picture of epileptic encephalopathy with impaired neuromotor development. Upon expression in HEK-293T cells, the variant appears totally devoid of enzymatic activity in vitro, apparently accumulated with respect to the wild-type or the missense variants, as detected by western blot, and in large part properly localized in the Golgi apparatus, as assessed by confocal microscopy. Both patients were found to efficiently express the CA19.9 antigen in the serum despite the total loss of ST3GAL3 activity, which thus appears replaceable from other ST3GALs in the synthesis of the sialyl-Lewis a epitope. Kinetic studies of ST3GAL3 revealed a strong preference for lactotetraosylceramide as acceptor and gangliotetraosylceramide was also efficiently utilized in vitro. Moreover, the p.A13D missense variant, the one maintaining residual sialyltransferase activity, was found to have much lower affinity for all suitable substrates than the wild-type enzyme with an overall catalytic efficiency almost negligible. Altogether the present data suggest that the apparent redundancy of ST3GALs deduced from knock-out mouse models only partially exists in humans. In fact, our patients lacking ST3GAL3 activity synthesize the CA19.9 epitope sialyl-Lewis a, but not all glycans necessary for fine brain functions, where the role of minor gangliosides deserves further attention.
ST3GAL5-CDG is a rare syndrome which is caused by variant GM3 synthases, the enzyme involved in the biosynthesis of a-b-c-series gangliosides. Here we report a novel homozygous ST3GAL5 variant, p.Gly342Ser, in a patient suffering from failure to thrive, severe hearing, visual, motor, and cognitive impairment, and respiratory chain dysfunction. A GM3 synthase assay towards the natural acceptor substrate lactosylceramide was performed upon transfection in HEK-293T cells of expression plasmids carrying wild type and mutated ST3GAL5 cDNAs. The assay revealed a complete loss of enzyme activity. Identical results were obtained with the other four ST3GAL5 variants which have been reported to be pathogenic. HEK-293T clones permanently expressing HaloTag-ST3GAL5 carrying each of the five variants were assessed by quantitative PCR, flow cytometry, western blotting, and confocal microscopy. The results indicated that transcription, translation, stability, and intracellular localization of the tagged protein were identical to those of the wild type construct. Compared with the very mild phenotype of st3gal5 KO mouse models, the results suggest that unknown mechanisms, in addition to the lack of a-b-c-series gangliosides, contribute to the syndrome. Direct enzyme assay upon transfection in model cells appears to be an effective tool for characterizing variants of glycosyltransferases involved in glycosphingolipid biosynthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.