Simulation Based Engineering Science (SBES) has brought major improvements in optimization, control and inverse analysis, all leading to a deeper understanding in many processes occuring in the real world. These noticeable breakthroughts are present in a vast variety of sectors such as aeronautic or automotive industries, mobile telecommunications or healthcare among many other fields. Nevertheless, SBES is currently confronting several difficulties to provide accurate results in complex industrial problems. Apart from the high computational costs associated with industrial applications, the errors introduced by constitutive modeling become more and more important when dealing with new materials. Concurrently, an unceasingly growing interest in concepts such as Big-Data, Machine Learning or Data-Analytics has been experienced. Indeed, this interest is intrinsically motivated by an exhaustive development in both data-acquisition and data-storage systems. For instance, an aircraft may produce over 500 GB of data during a single flight. This panorama brings a perfect opportunity to the so-called Dynamic Data Driven Application Systems (DDDAS), whose main objective is to merge classical simulation algorithms with data coming from experimental measures in a dynamic way. Within this scenario, data and simulations would no longer be uncoupled but rather a symbiosis that is to be exploited would achieve milestones which were inconceivable until these days. Indeed, data will no longer be understood as a static calibration of a given constitutive model but rather the model will be corrected dynamicly as soon as experimental data and simulations tend to diverge. Several numerical algorithms will be presented throughout this manuscript whose main objective is to strengthen the link between data and computational mechanics. The first part of the thesis is mainly focused on parameter identification, data-driven and data completion techniques. The second part is focused on Model Order Reduction (MOR) techniques, since they constitute a fundamental ally to achieve real time constraints arising from DDDAS framework. La Ciencia de la Ingeniería Basada en la Simulación (SBES) ha aportado importantes mejoras en la optimización, el control y el análisis inverso, todo lo cual ha llevado a una comprensión más profunda de muchos de los procesos que ocurren en el mundo real. Estos notables avances están presentes en una gran variedad de sectores como la industria aeronáutica o automotriz, las telecomunicaciones móviles o la salud, entre muchos otros campos. Sin embargo, SBES se enfrenta actualmente a varias dificultades para proporcionar resultados precisos en problemas industriales complejos. Aparte de los altos costes computacionales asociados a las aplicaciones industriales, los errores introducidos por el modelado constitutivo son cada vez más importantes a la hora de tratar con nuevos materiales. Al mismo tiempo, se ha experimentado un interés cada vez mayor en conceptos como Big-Data, Machine Learning o Data-Analytics. Ciertamente, este interés está intrínsecamente motivado por un desarrollo exhaustivo de los sistemas de adquisición y almacenamiento de datos. Por ejemplo, una aeronave puede producir más de 500 GB de datos durante un solo vuelo. Este panorama brinda una oportunidad perfecta a los denominados Sistemas de Aplicación Dinámicos Impulsados por Datos (DDDAS), cuyo objetivo principal es fusionar de forma dinámica los algoritmos clásicos de simulación con los datos procedentes de medidas experimentales. En este escenario, los datos y las simulaciones ya no se desacoplarían, sino que aprovechando una simbiosis se alcanzaría hitos que hasta ahora eran inconcebibles. Mas en detalle, los datos ya no se entenderán como una calibración estática de un modelo constitutivo dado, sino que el modelo se corregirá dinámicamente tan pronto como los datos experimentales y las simulaciones tiendan a diverger. A lo largo de este manuscrito se presentarán varios algoritmos numéricos cuyo objetivo principal es fortalecer el vínculo entre los datos y la mecánica computacional. La primera parte de la tesis se centra principalmente en técnicas de identificación de parámetros, basadas en datos y de compleción de datos. La segunda parte se centra en las técnicas de Reducción de Modelo (MOR), ya que constituyen un aliado fundamental para conseguir las restricciones de tiempo real derivadas del marco DDDAS. Les sciences de l'ingénieur basées sur la simulation (Simulation Based Engineering Science, SBES) ont apporté des améliorations majeures dans l'optimisation, le contrôle et l'analyse inverse, menant toutes à une meilleure compréhension de nombreux processus se produisant dans le monde réel. Ces percées notables sont présentes dans une grande variété de secteurs tels que l'aéronautique ou l'automobile, les télécommunications mobiles ou la santé, entre autres. Néanmoins, les SBES sont actuellement confrontées à plusieurs dificultés pour fournir des résultats précis dans des problèmes industriels complexes. Outre les coûts de calcul élevés associés aux applications industrielles, les erreurs introduites par la modélisation constitutive deviennent de plus en plus importantes lorsqu'il s'agit de nouveaux matériaux. Parallèlement, un intérêt sans cesse croissant pour des concepts tels que les données massives (big data), l'apprentissage machine ou l'analyse de données a été constaté. En effet, cet intérêt est intrinsèquement motivé par un développement exhaustif des systèmes d'acquisition et de stockage de données. Par exemple, un avion peut produire plus de 500 Go de données au cours d'un seul vol. Ce panorama apporte une opportunité parfaite aux systèmes d'application dynamiques pilotés par les données (Dynamic Data Driven Application Systems, DDDAS), dont l'objectif principal est de fusionner de manière dynamique des algorithmes de simulation classiques avec des données provenant de mesures expérimentales. Dans ce scénario, les données et les simulations ne seraient plus découplées, mais une symbiose à exploiter permettrait d'envisager des situations jusqu'alors inconcevables. En effet, les données ne seront plus comprises comme un étalonnage statique d'un modèle constitutif donné mais plutôt comme une correction dynamique du modèle dès que les données expérimentales et les simulations auront tendance à diverger. Plusieurs algorithmes numériques seront présentés tout au long de ce manuscrit dont l'objectif principal est de renforcer le lien entre les données et la mécanique computationnelle. La première partie de la thèse est principalement axée sur l'identification des paramètres, les techniques d'analyse des données et les techniques de complétion de données. La deuxième partie est axée sur les techniques de réduction de modèle (MOR), car elles constituent un allié fondamental pour satisfaire les contraintes temps réel découlant du cadre DDDAS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.