Chemicals used in sea lice management strategies in salmonid aquaculture include the avermectin class of compounds that can accumulate and persist in the sediments underneath salmon farms and directly impact nontarget benthic fauna. The effects of sediment organic carbon content and chemical residence time (CRT) on the lethal and sublethal toxicity of emamectin benzoate (EB; formulation: Slice®) and ivermectin (purified) and a combination of both were examined in two benthic invertebrates, the amphipod Eohaustorius estuarius and the polychaete Neanthes virens. In both species, increased sediment organic carbon content significantly reduced lethal toxicity, a modulation that was more pronounced for ivermectin and combination exposures. At a CRT of 4 months, lethal toxicity was reduced in E. estuarius but was unaffected in N. virens. Sublethal toxicity in N. virens (burrowing behavior) was modulated by sediment organic carbon and CRT in a similar manner to the trend in lethal toxicity. Inconsistencies in behavior (phototaxis) in E. estuarius made conclusions regarding toxicity modification by sediment organic carbon or CRT inconclusive. Our results indicate that environmental factors including sediment organic carbon content and the time compounds reside in sediments are important modifiers of chemotherapeutant toxicity in nontarget benthic species and should be considered when regulatory decisions regarding their use are made. Environ Toxicol Chem 2022;41:1918–1936. © 2022 SETAC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.