BackgroundHow do very small animals with limited long-distance dispersal abilities move between locations, especially if they prefer ephemeral micro-habitats that are only available for short periods of time? The free-living model nematode Caenorhabditis elegans and several congeneric taxa appear to be common in such short-lived environments, for example decomposing fruits or other rotting plant material. Dispersal is usually assumed to depend on animal vectors, yet all current data is based on only a limited number of studies. In our project we performed three comprehensive field surveys on possible invertebrate vectors in North German locations containing populations of C. elegans and two related species, especially C. remanei, and combined these screens with an experimental analysis of persistence in one of the vector taxa.ResultsOur field survey revealed that Caenorhabditis nematodes are commonly found in slugs, isopods, and chilopods, but are not present in the remaining taxonomic groups examined. Surprisingly, the nematodes were frequently isolated from the intestines of slugs, even if slugs were not collected in close association with suitable substrates for Caenorhabditis proliferation. This suggests that the nematodes are able to enter the slug intestines and persist for certain periods of time. Our experimental analysis confirmed the ability of C. elegans to invade slug intestines and subsequently be excreted alive with the slug feces, although only for short time periods under laboratory conditions.ConclusionsWe conclude that three invertebrate taxonomic groups represent potential vectors of Caenorhabditis nematodes. The nematodes appear to have evolved specific adaptations to enter and persist in the harsh environment of slug intestines, possibly indicating first steps towards a parasitic life-style.Electronic supplementary materialThe online version of this article (doi:10.1186/s12898-015-0050-z) contains supplementary material, which is available to authorized users.
The nematode Caenorhabditis elegans is a central laboratory model system in almost all biological disciplines, yet its natural life history and population biology are largely unexplored. Such information is essential for in-depth understanding of the nematode's biology because its natural ecology provides the context, in which its traits and the underlying molecular mechanisms evolved. We characterized natural phenotypic and genetic variation among North German C. elegans isolates. We used the unique opportunity to compare samples collected 10 years apart from the same compost heap and additionally included recent samples for this and a second site, collected across a 1.5-year period. Our analysis revealed significant population genetic differentiation between locations, across the 10-year time period, but for only one location a trend across the shorter time frame. Significant variation was similarly found for phenotypic traits of likely importance in nature, such as choice behavior and population growth in the presence of pathogens or naturally associated bacteria. Phenotypic variation was significantly influenced by C. elegans genotype, time of isolation, and sampling site. The here studied C. elegans isolates may provide a valuable, genetically variable resource for future dissection of naturally relevant gene functions.
The evolutionary transition towards multicellular life often involves growth in groups of undifferentiated cells followed by differentiation into soma and germ-like cells. Theory predicts that germ soma differentiation is facilitated by a convex trade-off between survival and reproduction. However, this has never been tested and these transitions remain poorly understood at the ecological and genetic level. Here, we study the evolution of cell groups in ten isogenic lines of the unicellular green algae Chlamydomonas reinhardtii with prolonged exposure to a rotifer predator. We confirm that growth in cell groups is heritable and characterized by a convex trade-off curve between reproduction and survival. Identical mutations evolve in all cell group isolates; these are linked to survival and reducing associated cell costs. Overall, we show that just 500 generations of predator selection were sufficient to lead to a convex trade-off and incorporate evolved changes into the prey genome.
Indirect evolutionary rescue (IER) is a mechanism where a non-evolving species is saved from extinction in an otherwise lethal environment by evolution in an interacting species. This process has been described in a predator–prey model, where extinction of the predator is prevented by a shift in the frequency of defended towards undefended prey when reduced predator densities lower selection for defended prey. We test here how increased mortality and the initial frequencies of the prey types affect IER. Combining the analysis of model simulations and experiments with rotifers feeding on algae we show IER in the presence of increased predator mortality. We found that IER was dependent on the ability of the prey to evolve as well as on the frequency of the defended prey. High initial frequencies of defended prey resulted in predator extinction despite the possibility for prey evolution, as the increase in undefended prey was delayed too much to allow predator rescue. This frequency dependency for IER was more pronounced for higher predator mortalities. Our findings can help informing the development of conservation and management strategies that consider evolutionary responses in communities to environmental changes.
Indirect evolutionary rescue (IER) is a mechanism where a non-evolving population is saved from extinction in an otherwise lethal environment by evolution in an interacting population. This process has been described in a predator-prey model, where extinction of the predator is prevented by a shift in the frequency of defended towards undefended prey when reduced predator densities lower selection for defended prey. We test here how increased mortality and the initial frequencies of the prey types affect IER. Combining the analysis of model simulations and experiments with rotifers feeding on an algal population we show IER in the presence of increased predator mortality. We found that IER was dependent on the ability of the prey population to evolve as well as on the frequency of the defended prey. High initial frequencies of defended prey resulted in predator extinction despite the possibility for prey evolution, as the increase in undefended prey was delayed too much to allow predator rescue. This frequency dependency for IER was more pronounced for higher predator mortalities. Our findings can help informing the development of conservation and management strategies that consider evolutionary responses in communities to environmental changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.