Computer-Aided Biomimetics (CAB) tools aim to support the integration of relevant biological knowledge into biomimetic problem-solving processes. Specific steps of biomimetic processes that require support include the identification, selection and abstraction of relevant biological analogies. Existing CAB tools usually aim to support these steps by describing biological systems in terms of functions, although engineering functions do not map naturally to biological functions. Consequentially, the resulting static, functional view provides an incomplete understanding of biological processes, which are dynamic, cyclic and self-organizing. This paper proposes an alternative approach that revolves around the concept of trade-offs. The aim is to include the biological context, such as environmental characteristics, that may provide information crucial to the transfer of biological information to an engineering application. The proposed design process is exemplified by an illustrative case study.
Information Extraction (IE) from scientific texts can be used to guide readers to the central information in scientific documents. But narrow IE systems extract only a fraction of the information captured, and Open IE systems do not perform well on the long and complex sentences encountered in scientific texts. In this work we combine the output of both types of systems to achieve Semi-Open Relation Extraction, a new task that we explore in the Biology domain. First, we present the Focused Open Biological Information Extraction (FO-BIE) dataset and use FOBIE to train a state-ofthe-art narrow scientific IE system to extract trade-off relations and arguments that are central to biology texts. We then run both the narrow IE system and a state-of-the-art Open IE system on a corpus of 10k open-access scientific biological texts. We show that a significant amount (65%) of erroneous and uninformative Open IE extractions can be filtered using narrow IE extractions. Furthermore, we show that the retained extractions are significantly more often informative to a reader. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.