Using single-molecule fluorescence spectroscopy, time-resolved conformational changes between fluorescently labeled tRNA have been characterized within surface-immobilized ribosomes proceeding through a complete cycle of translation elongation. Fluorescence resonance energy transfer was used to observe aminoacyl-tRNA (aa-tRNA) stably accommodating into the aminoacyl site (A site) of the ribosome via a multistep, elongation factor-Tu dependent process. Subsequently, tRNA molecules, bound at the peptidyl site and A site, fluctuate between two configurations assigned as classical and hybrid states. The lifetime of classical and hybrid states, measured for complexes carrying aa-tRNA and peptidyl-tRNA at the A site, shows that peptide bond formation decreases the lifetime of the classical-state tRNA configuration by Ϸ6-fold. These data suggest that the growing peptide chain plays a role in modulating fluctuations between hybrid and classical states. Single-molecule fluorescence resonance energy transfer was also used to observe aa-tRNA accommodation coupled with elongation factor G-mediated translocation. Dynamic rearrangements in tRNA configuration are also observed subsequent to the translocation reaction. This work underscores the importance of dynamics in ribosome function and demonstrates single-particle enzymology in a system of more than two components. P rotein synthesis, catalyzed by the ribosome, is rapid, processive, and highly regulated. In bacteria, two RNA-protein subunits consisting of a small 30S subunit and a large 50S subunit assemble around a mRNA template into a roughly spherical 70S particle that translates the nucleotide sequence into a polypeptide chain through repetitive, codon-dependent binding of aminoacylated tRNA.The landmark structures of the 30S (1, 2), 50S (3, 4), and 70S (5) ribosomal particles provide a molecular basis for understanding ribosome function. tRNA molecules bind to the ribosome in a solvent-accessible channel at the subunit interface. Three binding sites for tRNA, called the aminoacyl site (A site), peptidyl site (P site), and exit site (E site), have been identified on both the large and small subunit (Fig. 1). Each tRNA is separated from its neighbor at the elbow region (the site of Ϸ90°b ending) by 25-45 Å (5, 6). The anticodon stem loops of A-and P-site tRNA form Watson-Crick base pairs with adjacent mRNA codons on the 30S subunit (5, 7), whereas the 3Ј CCA terminal residues of A-and P-site tRNAs base-pair with conserved ribosomal RNA (rRNA) loops (8-10) within the 50S subunit peptidyltransferase center, the site of peptide bond formation (11). Additional interactions with rRNA and ribosomal proteins position tRNA molecules on the ribosome (5).The essential components and principal steps of translation have been delineated through genetic, biochemical, and kinetic methods (12). The process of polypeptide elongation has been most extensively characterized (13). Binding of aminoacyl-tRNA (aa-tRNA) to the A site occurs as a ''ternary complex'' with the GTPase elongation ...
Using single-molecule methods we observed the stepwise movement of aminoacyl-tRNA (aa-tRNA) into the ribosome during selection and kinetic proofreading using single-molecule fluorescence resonance energy transfer (smFRET). Intermediate states in the pathway of tRNA delivery were observed using antibiotics and nonhydrolyzable GTP analogs. We identified three unambiguous FRET states corresponding to initial codon recognition, GTPase-activated and fully accommodated states. The antibiotic tetracycline blocks progression of aa-tRNA from the initial codon recognition state, whereas cleavage of the sarcin-ricin loop impedes progression from the GTPase-activated state. Our data support a model in which ribosomal recognition of correct codon-anticodon pairs drives rotational movement of the incoming complex of EF-Tu-GTP-aa-tRNA toward peptidyl-tRNA during selection on the ribosome. We propose a mechanistic model of initial selection and proofreading.
Time series data provided by single-molecule Förster resonance energy transfer (smFRET) experiments offer the opportunity to infer not only model parameters describing molecular complexes, e.g., rate constants, but also information about the model itself, e.g., the number of conformational states. Resolving whether such states exist or how many of them exist requires a careful approach to the problem of model selection, here meaning discrimination among models with differing numbers of states. The most straightforward approach to model selection generalizes the common idea of maximum likelihood--selecting the most likely parameter values--to maximum evidence: selecting the most likely model. In either case, such an inference presents a tremendous computational challenge, which we here address by exploiting an approximation technique termed variational Bayesian expectation maximization. We demonstrate how this technique can be applied to temporal data such as smFRET time series; show superior statistical consistency relative to the maximum likelihood approach; compare its performance on smFRET data generated from experiments on the ribosome; and illustrate how model selection in such probabilistic or generative modeling can facilitate analysis of closely related temporal data currently prevalent in biophysics. Source code used in this analysis, including a graphical user interface, is available open source via http://vbFRET.sourceforge.net.
By using single-molecule fluorescence resonance energy transfer (smFRET), we observe the real-time dynamic coupling between the ribosome, labeled at the L1 stalk, and transfer RNA (tRNA). We find that an interaction between the ribosomal L1 stalk and the newly deacylated tRNA is established spontaneously upon peptide bond formation; this event involves coupled movements of the L1 stalk and tRNAs as well as ratcheting of the ribosome. In the absence of elongation factor G, the entire pretranslocation ribosome fluctuates between just two states: a nonratcheted state, with tRNAs in their classical configuration and no L1 stalk-tRNA interaction, and a ratcheted state, with tRNAs in an intermediate hybrid configuration and a direct L1 stalk-tRNA interaction. We demonstrate that binding of EF-G shifts the equilibrium toward the ratcheted state. Real-time smFRET experiments reveal that the L1 stalk-tRNA interaction persists throughout the translocation reaction, suggesting that the L1 stalk acts to direct tRNA movements during translocation.
Probing biomolecules at the single-molecule level can provide useful information about molecular interactions, kinetics and motions that is usually hidden in ensemble measurements. Techniques with improved sensitivity and time resolution are required to explore fast biomolecular dynamics. Here, we report the first observation of DNA hybridization at the single-molecule level using a carbon nanotube field-effect transistor. By covalently attaching a single-stranded probe DNA sequence to a point defect in a carbon nanotube, we are able to measure two-level fluctuations in the nanotube conductance due to reversible hybridizing and melting of a complementary DNA target. The kinetics are studied as a function of temperature, allowing the measurement of rate constants, melting curves and activation energies for different sequences and target concentrations. The kinetics show non-Arrhenius behavior, in agreement with DNA hybridization experiments using fluorescence correlation spectroscopy. This technique is label-free and has the potential for studying single-molecule dynamics at sub-microsecond time-scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.