Some of the anatomical and functional basis of cognitive impairment in multiple sclerosis (MS) currently remains unknown. In particular, there is scarce knowledge about modulations in induced EEG (nonphase activity) for diverse frequency bands related to attentional deficits in this pathology. The present study analyzes phase and nonphase alpha and gamma modulations in 26 remitting-relapsing multiple sclerosis patients during their participation in the attention network test compared with twenty-six healthy controls (HCs) matched in sociodemographic variables. Behavioral results showed that the MS group exhibited general slowing, suggesting impairment in alerting and orienting networks, as has been previously described in other studies. Time–frequency analysis of EEG revealed that the gamma band was related to the spatial translation of the attentional focus, and the alpha band seemed to be related to the expectancy mechanisms and cognitive processing of the target. Moreover, phase and nonphase modulations differed in their psychophysiological roles and were affected differently in the MS and HC groups. In summary, nonphase modulations can unveil hidden cognitive mechanisms for phase analysis and complete our knowledge of the neural basis of cognitive impairment in multiple sclerosis pathology.
Alpha event-related desynchronization (ERD) has been widely applied to understand the psychophysiological role of this band in cognition. In particular, a considerable number of publications have described spectral alterations in several pathologies using this time-frequency approach. However, ERD is not capable of specifically showing nonphase (induced) activity related to the presentation of stimuli. Recent studies have described an evoked and induced activity in the early phases (first 200 ms) of stimulus processing. However, scarce studies have analyzed induced and evoked modulations in longer latencies (>200 ms) and their potential roles in cognitive processing. The main goal of the present study was to analyze diverse evoked and induced modulations in response to visual stimuli. Thus, 58-channel electroencephalogram (EEG) was recorded in 21 healthy subjects during the performance of a visual attention task, and analyses were performed for both target and standard stimuli. The initial result showed that phase-locked and nonphase locked activities coexist in the early processing of target and standard stimuli as has been reported by previous studies. However, more modulations were evident in longer latencies in both evoked and induced activities. Correlation analyses suggest that similar maps were present for evoked and induced activities at different timepoints. In the discussion section, diverse proposals will be stated to define the potential roles of these modulations in the information processing for this cognitive task. As a general conclusion, induced activity enables the observation of cognitive mechanisms that are not visible by ERD or ERP modulations.
Principal component analysis (PCA) based on L1-norm maximization is an emerging technique that has drawn growing interest in the signal processing and machine learning research communities, especially due to its robustness to outliers. The present work proves that L1-norm PCA can perform independent component analysis (ICA) under the whitening assumption. However, when the source probability distributions fulfil certain conditions, the L1-norm criterion needs to be minimized rather than maximized, which can be accomplished by simple modifications on existing optimal algorithms for L1-PCA. If the sources have symmetric distributions, we show in addition that L1-PCA is linked to kurtosis optimization. A number of numerical experiments illustrate the theoretical results and analyze the comparative performance of different algorithms for ICA via L1-PCA. Although our analysis is asymptotic in the sample size, this equivalence opens interesting new perspectives for performing ICA using optimal algorithms for L1-PCA with guaranteed global convergence while inheriting the increased robustness to outliers of the L1-norm criterion.
This letter describes a fast and very simple algorithm for estimating the fetal electrocardiogram (FECG). It is based on independent component analysis, but we substitute its computationally demanding calculations for a much simpler procedure. The resulting method consists of two steps: 1) a dimensionality reduction step and 2) a computationally light postprocessing stage used to enhance the FECG signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.