The enormous mammal’s lifespan variation is the result of each species' adaptations to their own biological trade-offs and ecological conditions. Comparative genomics have demonstrated that genomic factors underlying both, species lifespans and longevity of individuals, are in part shared across the tree of life. Here, we compared protein-coding regions across the mammalian phylogeny to detect individual amino-acid (AA) changes shared by the most long-lived mammals and genes whose rates of protein evolution correlate with longevity. We discovered a total of 2,737 AA in 2,004 genes that distinguish long- and short-lived mammals, significantly more than expected by chance (p = 0.003). These genes belong to pathways involved in regulating lifespan, such as inflammatory response and hemostasis. Among them, a total 1,157 AA showed a significant association with maximum lifespan in a phylogenetic test. Interestingly, most of the detected AA positions do not vary in extant human populations (81.2%) or have allele frequencies below 1% (99.78%). Consequently, almost none of these putatively important variants could have been detected by Genome-Wide Association Studies (GWAS). Additionally, we identified four more genes whose rate of protein evolution correlated with longevity in mammals. Crucially, SNPs located in the detected genes explain a larger fraction of human lifespan heritability than expected, successfully demonstrating for the first time that comparative genomics can be used to enhance interpretation of human GWAS. Finally, we show that the human longevity-associated proteins are significantly more stable than the orthologous proteins from short-lived mammals, strongly suggesting that general protein stability is linked to increased lifespan.
The angiotensin-converting enzyme 2 is the cellular receptor used by SARS coronavirus SARS-CoV and SARS-CoV-2 to enter the cell. Both coronavirus use the receptor-binding domain (RBD) of their viral spike protein to interact with ACE2. The structural basis of these interactions are already known, forming a dimer of ACE2 with a trimer of the spike protein, opening the door to target them to prevent the infection. Here we present PepI-Cov19 database, a repository of peptides designed to target the interaction between the RDB of SARS-CoV-2 and ACE2 as well as the dimerization of ACE2 monomers. The peptides were modelled using our method PiPreD that uses native elements of the interaction between the targeted protein and cognate partner that are subsequently included in the designed peptides. These peptides recapitulate stretches of residues present in the native interface plus novel and highly diverse conformations that preserve the key interactions on the interface.PepI-Covid19 database provides an easy and convenient access to this wealth of information to the scientific community with the view of maximizing its potential impact in the development of novel therapeutic agents.
The angiotensin-converting enzyme 2 (ACE2) is the receptor used by SARS-CoV and SARS-CoV-2 coronaviruses to attach to cells via the receptor-binding domain (RBD) of their viral spike protein. Since the start of the COVID-19 pandemic, several structures of protein complexes involving ACE2 and RBD as well as monoclonal antibodies and nanobodies have become available. We have leveraged the structural data to design peptides to target the interaction between the RBD of SARS-CoV-2 and ACE2 and SARS-CoV and ACE2, as contrasting exemplar, as well as the dimerization surface of ACE2 monomers. The peptides were modelled using our original method: PiPreD that uses native elements of the interaction between the targeted protein and cognate partner(s) that are subsequently included in the designed peptides. These peptides recapitulate stretches of residues present in the native interface plus novel and highly diverse conformations surrogating key interactions at the interface. To facilitate the access to this information we have created a freely available and dedicated web-based repository, PepI-Covid19 database, providing convenient access to this wealth of information to the scientific community with the view of maximizing its potential impact in the development of novel therapeutic and diagnostic agents.
Coral restoration initiatives are gaining significant momentum in a global effort to enhance the recovery of degraded coral reefs. However, the implementation and upkeep of coral nurseries are particularly demanding, so that unforeseen breaks in maintenance operations might jeopardize well‐established projects. In the last 2 years, the COVID‐19 pandemic has resulted in a temporary yet prolonged abandonment of several coral gardening infrastructures worldwide, including remote localities. Here we provide a first assessment of the potential impacts of monitoring and maintenance breakdown in a suite of coral restoration projects (based on floating rope nurseries) in Colombia, Seychelles, and Maldives. Our study comprises nine nurseries from six locations, hosting a total of 3,554 fragments belonging to three coral genera, that were left unsupervised for a period spanning from 29 to 61 weeks. Floating nursery structures experienced various levels of damage, and total fragment survival spanned from 40 to 95% among projects, with Pocillopora showing the highest survival rate in all locations present. Overall, our study shows that, under certain conditions, abandoned coral nurseries can remain functional for several months without suffering critical failure from biofouling and hydrodynamism. Still, even where gardening infrastructures were only marginally affected, the unavoidable interruptions in data collection have slowed down ongoing project progress, diminishing previous investments and reducing future funding opportunities. These results highlight the need to increase the resilience and self‐sufficiency of coral restoration projects, so that the next global lockdown will not further shrink the increasing efforts to prevent coral reefs from disappearing.
Mammals vary 100-fold in their maximum lifespan. This enormous variation is the result of the adaptations of each species to their own biological trade-offs and ecological conditions. Comparative genomics studies have demonstrated that the genomic factors underlying the lifespans of species and the longevity of individuals are shared across the tree of life. Here, we set out to compare protein-coding regions across the mammalian phylogeny, aiming to detect individual amino acid changes shared by the most long-lived mammal species and genes whose rates of protein evolution correlate with longevity. We discovered a total of 2,737 amino acid changes in 2,004 genes that distinguish long- and short-lived mammals, significantly more than expected by chance (p=0.003). The detected genes belong to pathways involved in regulating lifespan, such as inflammatory response and hemostasis. Among them, a total 1,157 amino acids, located in 996 different genes, showed a significant association with maximum lifespan in a phylogenetically controlled test. Interestingly, most of the detected amino acids positions do not vary in extant human populations (>81.2%) or have allele frequencies below 1% (99.78%), Consequently, almost none could have been detected by Genome-Wide Association Studies (GWAS). Additionally, we identified four more genes whose rate of protein evolution correlated with longevity in mammals. Crucially, SNPs located in the detected genes explain a larger fraction of human lifespan heritability than expected by chance, successfully demonstrating for the first time that comparative genomics can be used to enhance the interpretation of human GWAS. Finally, we show that the human longevity-associated proteins coded by the detected genes are significantly more stable than the orthologous proteins from short-lived mammals, strongly suggesting that general protein stability is linked to increased lifespan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.