Occlusion of the major components of the spinal venous system is usually associated with spinal arteriovenous malformations or systemic thrombophlebitis. Although spinal venous system dysfunction has been implicated in compressive cord syndromes, myelopathies from decompression sickness, and spinal cord trauma, its pathophysiology remains unclear. To characterize disorders associated with spinal venous occlusion, we developed a model in the rat produced by focally coagulating the dorsal spinal vein transdurally at the T7 and T10 vertebral levels. Following such occlusion, venous stasis, sludging and perivascular hemorrhages in the small venous branches were observed. By 1 week postocclusion, animals developed hindlimb paralysis from which they partially recovered over time. Histologic examination in the acute phase disclosed tissue necrosis, edema, and hemorrhages predominantly in the dorsal aspect of the spinal cord. This was gradually replaced by an intense macrophagic infiltration and the partial formation of a cystic cavity by 1 month. These findings indicate that dorsal spinal vein occlusion in the rat causes significant neurologic and pathologic alterations. We conclude that this procedure produces a relevant animal model for the study of the pathophysiology of spinal venous occlusion, and it allows the characterization of its effects on spinal cord blood flow, the blood-spinal cord barrier, and the development of edema independent of cord compression. Our findings in this model provide an insight into one of the mechanisms of injury extension in spinal cord trauma and other disorders associated with spinal venous dysfunction.
Gas-filled microbubbles attached to cell surfaces can interact with focused ultrasound to create microstreaming of nearby fluid. We directly observed the ultrasound/microbubble interaction and documented that under certain conditions fluorescent particles that were attached to the surface of live cells could be removed. Fluorescently labeled liposomes that were larger than 500 nm in diameter were attached to the surface of endothelial cells using cRGD targeting to αvβ3 integrin. Microbubbles were attached to the surface of the cells through electrostatic interactions. Images taken before and after the ultrasound exposure were compared to document the effects on the liposomes. When exposed to ultrasound with peak negative pressure of 0.8 MPa, single microbubbles and groups of isolated microbubbles were observed to remove targeted liposomes from the cell surface. Liposomes were removed from a region on the cell surface that averaged 33.1 μm in diameter. The maximum distance between a single microbubble and a detached liposome was 34.5 μm. Single microbubbles were shown to be able to remove liposomes from over half the surface of a cell. The distance over which liposomes were removed was significantly dependent on the resting diameter of the microbubble. Clusters of adjoining microbubbles were not seen to remove liposomes. These observations demonstrate that the fluid shear forces generated by the ultrasound/microbubble interaction can remove liposomes from the surfaces of cells over distances that are greater than the diameter of the microbubble.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.