Core body temperature (CBT) is a key vital sign and fever is an important indicator of disease. In the past decade, there has been growing interest for vital sign monitoring technology that may be embedded in wearable devices, and the COVID-19 pandemic has highlighted the need for remote patient monitoring systems. While wrist-worn sensors allow continuous assessment of heart rate and oxygen saturation, reliable measurement of CBT at the wrist remains challenging. In this study, CBT was measured continuously in a free-living setting using a novel technology worn at the wrist and compared to reference core body temperature measurements, i.e., CBT values acquired with an ingestible temperature-sensing pill. Fifty individuals who received the COVID-19 booster vaccination were included. The datasets of 33 individuals were used to develop the CBT prediction algorithm, and the algorithm was then validated on the datasets of 17 participants. Mean observation time was 26.4 h and CBT > 38.0 °C occurred in 66% of the participants. CBT predicted by the wrist-worn sensor showed good correlation to the reference CBT (r = 0.72). Bland–Altman statistics showed an average bias of 0.11 °C of CBT predicted by the wrist-worn device compared to reference CBT, and limits of agreement were − 0.67 to + 0.93 °C, which is comparable to the bias and limits of agreement of commonly used tympanic membrane thermometers. The small size of the components needed for this technology would allow its integration into a variety of wearable monitoring systems assessing other vital signs and at the same time allowing maximal freedom of movement to the user.
Prevalence of hypertension, subjective sleep complaints and snoring increases with age. Worse sleep and snoring, in turn, are independent risk factors to develop hypertension. Both respiratory muscle training (RMT) and intermittent hypoxia (IH) are suggested to have positive effects on these physiological and behavioral variables. This study therefore aimed to test the acute effects of a single bout of RMT, with and without IH, on resting blood pressure (BP) and sleep. Fourteen prehypertensive elderly performed a 60-min session of (a) intermittent voluntary normocapnic hyperpnea (HYP) alone, (b) HYP in combination with IH (HYP&IH) and (c) a sham intervention in randomized order. BP, hemodynamics, heart rate variability (HRV), cardiac baroreflex sensitivity (BRS) and pulse wave velocity (PWV) were assessed before and 15, 30 and 45 min after each intervention. Variables of sleep were assessed with actigraphy, pulse oximetry and with questionnaires during and after the night following each intervention. Neither HYP nor HYP&IH resulted in a decrease in BP. Repeated measures ANOVA revealed no significant interaction effect for systolic BP (
p
= 0.090), diastolic BP (
p
= 0.151), HRV parameters, BRS and PWV (all
p
> 0.095). Fragmentation index was lower after both HYP (−6.5 units) and HYP&IH (−8.4 units) compared to sham,
p
(ANOVA) = 0.046, although pairwise comparisons reveal no significant differences. There were no other significant effects for the remaining sleep variables. We conclude that one bout of intermittent hyperpnea, alone or in combination with IH, is not effective in lowering blood pressure or improving sleep in prehypertensive elderly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.