The emergence of large-scale collective phenomena from simple interactions between individual units is a hallmark of active matter systems. Active colloids with alignment-dominated interparticle interactions tend to develop orientational order and form motile coherent states, such as flocks and swarms. Alternatively, a combination of self-propulsion and excluded-volume interactions results in self-trapping and active phase separation into dense clusters. Here, we reveal unconventional arrested-motility states in ensembles of active discoidal particles powered by induced-charge electrophoresis. Combining experiments and computational modeling, we demonstrate that the shape asymmetry of the particles promotes the hydrodynamically assisted formation of active particles’ bound states in a certain range of excitation parameters, ultimately leading to a spontaneous collective state with arrested motility. Unlike the jammed clusters obtained through self-trapping, the arrested-motility phase remains sparse, dynamic, and reconfigurable. The demonstrated mechanism of phase separation seeded by bound state formation in ensembles of oblate active particles is generic and should be applicable to other active colloidal systems.
Chemically active colloids self-propel by catalysing the decomposition of molecular ‘fuel’ available in the surrounding solution. If the various molecular species involved in the reaction have distinct interactions with the colloid surface, and if the colloid has some intrinsic asymmetry in its surface chemistry or geometry, there will be phoretic flows in an interfacial layer surrounding the particle, leading to directed motion. Most studies of chemically active colloids have focused on spherical, axisymmetric ‘Janus’ particles, which (in the bulk, and in absence of fluctuations) simply move in a straight line. For particles with a complex (non-spherical and non-axisymmetric) geometry, the dynamics can be much richer. Here, we consider chemically active helices. Via numerical calculations and slender body theory, we study how the translational and rotational velocities of the particle depend on geometry and the distribution of catalytic activity over the particle surface. We confirm the recent finding of Katsamba et al. (J. Fluid Mech., vol. 898, 2020, p. A24) that both tangential and circumferential concentration gradients contribute to the particle velocity. The relative importance of these contributions has a strong impact on the motion of the particle. We show that, by a judicious choice of the particle design parameters, one can suppress components of angular velocity that are perpendicular to the screw axis, or even select for purely ‘sideways’ translation of the helix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.